IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v86y2016icp643-650.html
   My bibliography  Save this article

Transesterification of waste cooking oil using FeCl3-modified resin catalyst and the research of catalytic mechanism

Author

Listed:
  • Ma, Yingqun
  • Wang, Qunhui
  • Gao, Zhen
  • Sun, Xiaohong
  • Wang, Nan
  • Niu, Ruxuan
  • Ma, Hongzhi

Abstract

Biodiesel production from waste cooking oil using FeCl3-modified resin as heterogeneous catalyst was investigated. In the optimum conditions, Fe load rate of resin of 10.97%. Comparison of effects of modified resin, unmodified resin, and homogeneous catalyst (FeCl3·6H2O) for the transesterification of waste cooking oil and methanol revealed that the transesterification rate of modified resin as catalyst reached 92.13%, which was 13.37% and 27.81% higher than those of unmodified resin and FeCl3·6H2O as catalysts, respectively. After the ninth run of reusing modified resin, transesterification rate stilled reach 73%. The result of NH3-Fourier transform infrared analysis proved that FeCl3 reacted with Bronsted acid site (SO3H) to form a new Lewis acid site. Results of Fourier transform infrared and X-ray diffraction analyses showed that –OH group disappeared and no crystalline phase was present in modified resin, which illustrated that the new Lewis acid site was formed by chemical reactions.

Suggested Citation

  • Ma, Yingqun & Wang, Qunhui & Gao, Zhen & Sun, Xiaohong & Wang, Nan & Niu, Ruxuan & Ma, Hongzhi, 2016. "Transesterification of waste cooking oil using FeCl3-modified resin catalyst and the research of catalytic mechanism," Renewable Energy, Elsevier, vol. 86(C), pages 643-650.
  • Handle: RePEc:eee:renene:v:86:y:2016:i:c:p:643-650
    DOI: 10.1016/j.renene.2015.08.079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115302792
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.08.079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dias, J.M. & Araújo, J.M. & Costa, J.F. & Alvim-Ferraz, M.C.M. & Almeida, M.F., 2013. "Biodiesel production from raw castor oil," Energy, Elsevier, vol. 53(C), pages 58-66.
    2. Galadima, Ahmad & Muraza, Oki, 2014. "Biodiesel production from algae by using heterogeneous catalysts: A critical review," Energy, Elsevier, vol. 78(C), pages 72-83.
    3. Lee, H.V. & Juan, J.C. & Taufiq-Yap, Y.H., 2015. "Preparation and application of binary acid–base CaO–La2O3 catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 74(C), pages 124-132.
    4. Hájek, Martin & Skopal, František & Čapek, Libor & Černoch, Michal & Kutálek, Petr, 2012. "Ethanolysis of rapeseed oil by KOH as homogeneous and as heterogeneous catalyst supported on alumina and CaO," Energy, Elsevier, vol. 48(1), pages 392-397.
    5. Pullen, James & Saeed, Khizer, 2014. "Factors affecting biodiesel engine performance and exhaust emissions – Part II: Experimental study," Energy, Elsevier, vol. 72(C), pages 17-34.
    6. Lim, Cheolsoo & Lee, Jongtae & Hong, Jihyung & Song, Changkeun & Han, Jinseok & Cha, Jun-Seok, 2014. "Evaluation of regulated and unregulated emissions from a diesel powered vehicle fueled with diesel/biodiesel blends in Korea," Energy, Elsevier, vol. 77(C), pages 533-541.
    7. Tariq, Muhammad & Ali, Saqib & Khalid, Nasir, 2012. "Activity of homogeneous and heterogeneous catalysts, spectroscopic and chromatographic characterization of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6303-6316.
    8. Pullen, James & Saeed, Khizer, 2014. "Factors affecting biodiesel engine performance and exhaust emissions – Part I: Review," Energy, Elsevier, vol. 72(C), pages 1-16.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Porcel, Meline Gurtat & de Mello, Bruna Tais Ferreira & Alves, Helton José & Schneider, Ricardo & da Silva, Camila & Borba, Carlos Eduardo, 2023. "Synthesis and characterization of KF/waste glass catalyst for use in the transesterification process under pressurized conditions," Renewable Energy, Elsevier, vol. 203(C), pages 56-67.
    2. di Bitonto, Luigi & Pastore, Carlo, 2019. "Metal hydrated-salts as efficient and reusable catalysts for pre-treating waste cooking oils and animal fats for an effective production of biodiesel," Renewable Energy, Elsevier, vol. 143(C), pages 1193-1200.
    3. Zhang, Heng & Li, Hu & Hu, Yulin & Venkateswara Rao, Kasanneni Tirumala & Xu, Chunbao (Charles) & Yang, Song, 2019. "Advances in production of bio-based ester fuels with heterogeneous bifunctional catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    4. Gargari, M. Hashemzadeh & Sadrameli, S.M., 2019. "A single-phase transesterification of linseed oil using different co-solvents and hydrogel in the presence of calcium oxide: An optimization study," Renewable Energy, Elsevier, vol. 139(C), pages 426-434.
    5. Ma, Yingqun & Wang, Qunhui & Sun, Xiaohong & Wu, Chuanfu & Gao, Zhen, 2017. "Kinetics studies of biodiesel production from waste cooking oil using FeCl3-modified resin as heterogeneous catalyst," Renewable Energy, Elsevier, vol. 107(C), pages 522-530.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Yingqun & Wang, Qunhui & Zheng, Lu & Gao, Zhen & Wang, Qiang & Ma, Yuhui, 2016. "Mixed methanol/ethanol on transesterification of waste cooking oil using Mg/Al hydrotalcite catalyst," Energy, Elsevier, vol. 107(C), pages 523-531.
    2. Ma, Yingqun & Wang, Qunhui & Sun, Xiaohong & Wu, Chuanfu & Gao, Zhen, 2017. "Kinetics studies of biodiesel production from waste cooking oil using FeCl3-modified resin as heterogeneous catalyst," Renewable Energy, Elsevier, vol. 107(C), pages 522-530.
    3. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    4. Thitsartarn, Warintorn & Maneerung, Thawatchai & Kawi, Sibudjing, 2015. "Highly active and durable Ca-doped Ce-SBA-15 catalyst for biodiesel production," Energy, Elsevier, vol. 89(C), pages 946-956.
    5. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    6. Renzi, Massimiliano & Bietresato, Marco & Mazzetto, Fabrizio, 2016. "An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends," Energy, Elsevier, vol. 115(P1), pages 1069-1080.
    7. Ambat, Indu & Srivastava, Varsha & Sillanpää, Mika, 2018. "Recent advancement in biodiesel production methodologies using various feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 356-369.
    8. Fabián Vargas & Armando Pérez & Rene Delgado & Emilio Hernández & José Alejandro Suástegui, 2019. "Performance Analysis of a Compression Ignition Engine Using Mixture Biodiesel Palm and Diesel," Sustainability, MDPI, vol. 11(18), pages 1-26, September.
    9. S. M. Ashrafur Rahman & Md. Nurun Nabi & Thuy Chu Van & Kabir Suara & Mohammad Jafari & Ashley Dowell & Md. Aminul Islam & Anthony J. Marchese & Jessica Tryner & Md. Farhad Hossain & Thomas J. Rainey , 2018. "Performance and Combustion Characteristics Analysis of Multi-Cylinder CI Engine Using Essential Oil Blends," Energies, MDPI, vol. 11(4), pages 1-15, March.
    10. Sun, Chunhua & Liu, Yu & Qiao, Xinqi & Ju, Dehao & Tang, Qing & Fang, Xiaoyuan & Zhou, Feng, 2020. "Experimental study of effects of exhaust gas recirculation on combustion, performance, and emissions of DME-biodiesel fueled engine," Energy, Elsevier, vol. 197(C).
    11. Bora, Bhaskor J. & Saha, Ujjwal K., 2016. "Experimental evaluation of a rice bran biodiesel – biogas run dual fuel diesel engine at varying compression ratios," Renewable Energy, Elsevier, vol. 87(P1), pages 782-790.
    12. Lin, Kuang C. & Dahiya, Anurag & Tao, Hairong & Kao, Fan-Hsu, 2022. "Combustion mechanism and CFD investigation of methyl isobutanoate as a component of biodiesel surrogate," Energy, Elsevier, vol. 249(C).
    13. Loganathan, S. & Leenus Jesu Martin, M. & Nagalingam, B. & Prabhu, L., 2018. "Heat release rate and performance simulation of DME fuelled diesel engine using oxygenate correction factor and load correction factor in double Wiebe function," Energy, Elsevier, vol. 150(C), pages 77-91.
    14. López, I. & Pinzi, S. & Leiva-Candia, D. & Dorado, M.P., 2016. "Multiple response optimization to reduce exhaust emissions and fuel consumption of a diesel engine fueled with olive pomace oil methyl ester/diesel fuel blends," Energy, Elsevier, vol. 117(P2), pages 398-404.
    15. Bora, Bhaskor J. & Saha, Ujjwal K., 2015. "Comparative assessment of a biogas run dual fuel diesel engine with rice bran oil methyl ester, pongamia oil methyl ester and palm oil methyl ester as pilot fuels," Renewable Energy, Elsevier, vol. 81(C), pages 490-498.
    16. Abdullah, Sharifah Hanis Yasmin Sayid & Hanapi, Nur Hanis Mohamad & Azid, Azman & Umar, Roslan & Juahir, Hafizan & Khatoon, Helena & Endut, Azizah, 2017. "A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1040-1051.
    17. Eko Supriyanto & Jayan Sentanuhady & Ariyana Dwiputra & Ari Permana & Muhammad Akhsin Muflikhun, 2021. "The Recent Progress of Natural Sources and Manufacturing Process of Biodiesel: A Review," Sustainability, MDPI, vol. 13(10), pages 1-26, May.
    18. Kim, Junghwan & Kim, Keunsoo & Oh, Seungmook & Lee, Sunyoup, 2016. "An assessment of the biodiesel low-temperature combustion engine under transient cycles using single-cylinder engine experiment and cycle simulation," Energy, Elsevier, vol. 95(C), pages 471-482.
    19. Flavio Caresana & Marco Bietresato & Massimiliano Renzi, 2021. "Injection and Combustion Analysis of Pure Rapeseed Oil Methyl Ester (RME) in a Pump-Line-Nozzle Fuel Injection System," Energies, MDPI, vol. 14(22), pages 1-25, November.
    20. Li, Yaopeng & Jia, Ming & Chang, Yachao & Xie, Maozhao & Reitz, Rolf D., 2016. "Towards a comprehensive understanding of the influence of fuel properties on the combustion characteristics of a RCCI (reactivity controlled compression ignition) engine," Energy, Elsevier, vol. 99(C), pages 69-82.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:86:y:2016:i:c:p:643-650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.