IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v86y2016icp38-48.html
   My bibliography  Save this article

A novel online training neural network-based algorithm for wind speed estimation and adaptive control of PMSG wind turbine system for maximum power extraction

Author

Listed:
  • Jaramillo-Lopez, Fernando
  • Kenne, Godpromesse
  • Lamnabhi-Lagarrigue, Francoise

Abstract

In this paper, an adaptive control scheme for maximum power point tracking of stand-alone PMSG wind turbine systems (WTS) is presented. A novel procedure to estimate the wind speed is derived. To achieve this, a neural network identifier (NNI) is designed in order to approximate the mechanical torque of the WTS. With this information, the wind speed is calculated based on the optimal mechanical torque point. The NNI approximates in real-time the mechanical torque signal and it does not need off-line training to get its optimal parameter values. In this way, it can really approximates any mechanical torque value with good accuracy. In order to regulate the rotor speed to the optimal speed value, a block-backstepping controller is derived. Uniform asymptotic stability of the tracking error origin is proved using Lyapunov arguments. Numerical simulations and comparisons with a standard passivity based controller are made in order to show the good performance of the proposed adaptive scheme.

Suggested Citation

  • Jaramillo-Lopez, Fernando & Kenne, Godpromesse & Lamnabhi-Lagarrigue, Francoise, 2016. "A novel online training neural network-based algorithm for wind speed estimation and adaptive control of PMSG wind turbine system for maximum power extraction," Renewable Energy, Elsevier, vol. 86(C), pages 38-48.
  • Handle: RePEc:eee:renene:v:86:y:2016:i:c:p:38-48
    DOI: 10.1016/j.renene.2015.07.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811530166X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.07.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. González, L.G. & Figueres, E. & Garcerá, G. & Carranza, O., 2010. "Maximum-power-point tracking with reduced mechanical stress applied to wind-energy-conversion-systems," Applied Energy, Elsevier, vol. 87(7), pages 2304-2312, July.
    2. Boukhezzar, B. & Lupu, L. & Siguerdidjane, H. & Hand, M., 2007. "Multivariable control strategy for variable speed, variable pitch wind turbines," Renewable Energy, Elsevier, vol. 32(8), pages 1273-1287.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karabacak, Murat, 2019. "A new perturb and observe based higher order sliding mode MPPT control of wind turbines eliminating the rotor inertial effect," Renewable Energy, Elsevier, vol. 133(C), pages 807-827.
    2. Aman A. Tanvir & Adel Merabet, 2020. "Artificial Neural Network and Kalman Filter for Estimation and Control in Standalone Induction Generator Wind Energy DC Microgrid," Energies, MDPI, vol. 13(7), pages 1-16, April.
    3. Btissam Majout & Badre Bossoufi & Manale Bouderbala & Mehedi Masud & Jehad F. Al-Amri & Mohammed Taoussi & Mohammed El Mahfoud & Saad Motahhir & Mohammed Karim, 2022. "Improvement of PMSG-Based Wind Energy Conversion System Using Developed Sliding Mode Control," Energies, MDPI, vol. 15(5), pages 1-17, February.
    4. Hamed Habibi & Hamed Rahimi Nohooji & Ian Howard & Silvio Simani, 2019. "Fault-Tolerant Neuro Adaptive Constrained Control of Wind Turbines for Power Regulation with Uncertain Wind Speed Variation," Energies, MDPI, vol. 12(24), pages 1-33, December.
    5. Gaurav Chaudhary & Jacob J. Lamb & Odne S. Burheim & Bjørn Austbø, 2021. "Review of Energy Storage and Energy Management System Control Strategies in Microgrids," Energies, MDPI, vol. 14(16), pages 1-26, August.
    6. Fantino, Roberto & Solsona, Jorge & Busada, Claudio, 2016. "Nonlinear observer-based control for PMSG wind turbine," Energy, Elsevier, vol. 113(C), pages 248-257.
    7. Golnary, Farshad & Tse, K.T., 2021. "Novel sensorless fault-tolerant pitch control of a horizontal axis wind turbine with a new hybrid approach for effective wind velocity estimation," Renewable Energy, Elsevier, vol. 179(C), pages 1291-1315.
    8. Abolvafaei, Mahnaz & Ganjefar, Soheil, 2019. "Maximum power extraction from a wind turbine using second-order fast terminal sliding mode control," Renewable Energy, Elsevier, vol. 139(C), pages 1437-1446.
    9. Adrian Gambier, 2021. "Pitch Control of Three Bladed Large Wind Energy Converters—A Review," Energies, MDPI, vol. 14(23), pages 1-24, December.
    10. Feiyu Zhang & Yuqi Dong & Kequan Zhang, 2016. "A Novel Combined Model Based on an Artificial Intelligence Algorithm—A Case Study on Wind Speed Forecasting in Penglai, China," Sustainability, MDPI, vol. 8(6), pages 1-20, June.
    11. Shrabani Sahu & Sasmita Behera, 2022. "A review on modern control applications in wind energy conversion system," Energy & Environment, , vol. 33(2), pages 223-262, March.
    12. Barambones, Oscar & Cortajarena, Jose A. & Calvo, Isidro & Gonzalez de Durana, Jose M. & Alkorta, Patxi & Karami-Mollaee, A., 2019. "Variable speed wind turbine control scheme using a robust wind torque estimation," Renewable Energy, Elsevier, vol. 133(C), pages 354-366.
    13. Dali, Ali & Abdelmalek, Samir & Bakdi, Azzeddine & Bettayeb, Maamar, 2021. "A new robust control scheme: Application for MPP tracking of a PMSG-based variable-speed wind turbine," Renewable Energy, Elsevier, vol. 172(C), pages 1021-1034.
    14. Chen, Jian & Yao, Wei & Zhang, Chuan-Ke & Ren, Yaxing & Jiang, Lin, 2019. "Design of robust MPPT controller for grid-connected PMSG-Based wind turbine via perturbation observation based nonlinear adaptive control," Renewable Energy, Elsevier, vol. 134(C), pages 478-495.
    15. Abolvafaei, Mahnaz & Ganjefar, Soheil, 2020. "Maximum power extraction from wind energy system using homotopy singular perturbation and fast terminal sliding mode method," Renewable Energy, Elsevier, vol. 148(C), pages 611-626.
    16. Kaman Thapa Magar & Mark Balas & Susan Frost & Nailu Li, 2017. "Adaptive State Feedback—Theory and Application for Wind Turbine Control," Energies, MDPI, vol. 10(12), pages 1-15, December.
    17. Marugán, Alberto Pliego & Márquez, Fausto Pedro García & Perez, Jesus María Pinar & Ruiz-Hernández, Diego, 2018. "A survey of artificial neural network in wind energy systems," Applied Energy, Elsevier, vol. 228(C), pages 1822-1836.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ganjefar, Soheil & Mohammadi, Ali, 2016. "Variable speed wind turbines with maximum power extraction using singular perturbation theory," Energy, Elsevier, vol. 106(C), pages 510-519.
    2. MacPhee, David W. & Beyene, Asfaw, 2015. "Experimental and Fluid Structure Interaction analysis of a morphing wind turbine rotor," Energy, Elsevier, vol. 90(P1), pages 1055-1065.
    3. Mérida, Jován & Aguilar, Luis T. & Dávila, Jorge, 2014. "Analysis and synthesis of sliding mode control for large scale variable speed wind turbine for power optimization," Renewable Energy, Elsevier, vol. 71(C), pages 715-728.
    4. Fan, Zhixin & Zhu, Caichao, 2019. "The optimization and the application for the wind turbine power-wind speed curve," Renewable Energy, Elsevier, vol. 140(C), pages 52-61.
    5. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    6. Phan, Dinh-Chung & Yamamoto, Shigeru, 2016. "Rotor speed control of doubly fed induction generator wind turbines using adaptive maximum power point tracking," Energy, Elsevier, vol. 111(C), pages 377-388.
    7. Yolanda Vidal & Leonardo Acho & Ningsu Luo & Mauricio Zapateiro & Francesc Pozo, 2012. "Power Control Design for Variable-Speed Wind Turbines," Energies, MDPI, vol. 5(8), pages 1-18, August.
    8. Lin, Chia-Hung & Huang, Cong-Hui & Du, Yi-Chun & Chen, Jian-Liung, 2011. "Maximum photovoltaic power tracking for the PV array using the fractional-order incremental conductance method," Applied Energy, Elsevier, vol. 88(12), pages 4840-4847.
    9. Moradi, Hamed & Vossoughi, Gholamreza, 2015. "Robust control of the variable speed wind turbines in the presence of uncertainties: A comparison between H∞ and PID controllers," Energy, Elsevier, vol. 90(P2), pages 1508-1521.
    10. Camblong, Haritza & Vechiu, Ionel & Guillaud, Xavier & Etxeberria, Aitor & Kreckelbergh, Stéphane, 2014. "Wind turbine controller comparison on an island grid in terms of frequency control and mechanical stress," Renewable Energy, Elsevier, vol. 63(C), pages 37-45.
    11. Azizi, Askar & Nourisola, Hamid & Shoja-Majidabad, Sajjad, 2019. "Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller," Renewable Energy, Elsevier, vol. 135(C), pages 55-65.
    12. Nikita Tomin, 2023. "Robust Reinforcement Learning-Based Multiple Inputs and Multiple Outputs Controller for Wind Turbines," Mathematics, MDPI, vol. 11(14), pages 1-19, July.
    13. Mseddi, Amina & Le Ballois, Sandrine & Aloui, Helmi & Vido, Lionel, 2019. "Robust control of a wind conversion system based on a hybrid excitation synchronous generator: A comparison between H∞ and CRONE controllers," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 158(C), pages 453-476.
    14. Marwa Hassan & Alsnosy Balbaa & Hanady H. Issa & Noha H. El-Amary, 2018. "Asymptotic Output Tracked Artificial Immunity Controller for Eco-Maximum Power Point Tracking of Wind Turbine Driven by Doubly Fed Induction Generator," Energies, MDPI, vol. 11(10), pages 1-25, October.
    15. Trujillo, C.L. & Velasco, D. & Figueres, E. & Garcerá, G., 2010. "Analysis of active islanding detection methods for grid-connected microinverters for renewable energy processing," Applied Energy, Elsevier, vol. 87(11), pages 3591-3605, November.
    16. Yanwei Jing & Hexu Sun & Lei Zhang & Tieling Zhang, 2017. "Variable Speed Control of Wind Turbines Based on the Quasi-Continuous High-Order Sliding Mode Method," Energies, MDPI, vol. 10(10), pages 1-21, October.
    17. Chen, Jiahao & Hu, Zhiqiang & Liu, Geliang & Wan, Decheng, 2019. "Coupled aero-hydro-servo-elastic methods for floating wind turbines," Renewable Energy, Elsevier, vol. 130(C), pages 139-153.
    18. Lin, Zhongwei & Chen, Zhenyu & Liu, Jizhen & Wu, Qiuwei, 2019. "Coordinated mechanical loads and power optimization of wind energy conversion systems with variable-weight model predictive control strategy," Applied Energy, Elsevier, vol. 236(C), pages 307-317.
    19. Han, Chenlu & Nagamune, Ryozo, 2020. "Platform position control of floating wind turbines using aerodynamic force," Renewable Energy, Elsevier, vol. 151(C), pages 896-907.
    20. Amira Elkodama & Amr Ismaiel & A. Abdellatif & S. Shaaban & Shigeo Yoshida & Mostafa A. Rushdi, 2023. "Control Methods for Horizontal Axis Wind Turbines (HAWT): State-of-the-Art Review," Energies, MDPI, vol. 16(17), pages 1-32, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:86:y:2016:i:c:p:38-48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.