IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v83y2015icp78-84.html
   My bibliography  Save this article

A novel hybrid transmission for variable speed wind turbines

Author

Listed:
  • Jelaska, Damir
  • Podrug, Srdjan
  • Perkušić, Milan

Abstract

We herein advance a novel, power summation hybrid transmission, which has the ability to convert the variable speed of a wind turbine rotor shaft into the constant speed required at a generator shaft for a whole range of wind speeds, thereby eliminating the need for a frequency converter. The transmission consists of a single one-stage planetary gear train (PGT) with three rotating shafts and a simple control system consisting of a few sensors and a control motor controlled by a microprocessor. One of the PGT shafts is the input, another is the output, and the third is coupled to the control motor as second input. The optimal tip-speed ratio is kept constant at low wind speeds by controlling the speed of the control motor, maximising the capture of energy from the wind. The wind-rotor speed continues to vary above the rated wind speed zone, but the rotor shaft power is kept constant by using the same control system. In this way, a constant electrical power output is achieved without altering the blade pitch, i.e., with the rotor in a fixed geometry. A frame design procedure for the transmission is proposed, efficiency expressions are derived, an example transmission operation is presented and efficiency comparisons to a mainstream variable speed wind turbine are carried out.

Suggested Citation

  • Jelaska, Damir & Podrug, Srdjan & Perkušić, Milan, 2015. "A novel hybrid transmission for variable speed wind turbines," Renewable Energy, Elsevier, vol. 83(C), pages 78-84.
  • Handle: RePEc:eee:renene:v:83:y:2015:i:c:p:78-84
    DOI: 10.1016/j.renene.2015.04.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115003018
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.04.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mangialardi, L. & Mantriota, G., 1996. "Dynamic behaviour of wind power systems equipped with automatically regulated continuously variable transmission," Renewable Energy, Elsevier, vol. 7(2), pages 185-203.
    2. Zhao, Xueyong & Maißer, Peter, 2003. "A novel power splitting drive train for variable speed wind power generators," Renewable Energy, Elsevier, vol. 28(13), pages 2001-2011.
    3. Boukhezzar, B. & Lupu, L. & Siguerdidjane, H. & Hand, M., 2007. "Multivariable control strategy for variable speed, variable pitch wind turbines," Renewable Energy, Elsevier, vol. 32(8), pages 1273-1287.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Radu Saulescu & Mircea Neagoe & Codruta Jaliu, 2018. "Conceptual Synthesis of Speed Increasers for Wind Turbine Conversion Systems," Energies, MDPI, vol. 11(9), pages 1-33, August.
    2. Mircea Neagoe & Radu Saulescu & Codruta Jaliu, 2019. "Design and Simulation of a 1 DOF Planetary Speed Increaser for Counter-Rotating Wind Turbines with Counter-Rotating Electric Generators," Energies, MDPI, vol. 12(9), pages 1-19, May.
    3. Francesco Bottiglione & Giacomo Mantriota & Marco Valle, 2018. "Power-Split Hydrostatic Transmissions for Wind Energy Systems," Energies, MDPI, vol. 11(12), pages 1-15, December.
    4. Mircea Neagoe & Radu Saulescu & Codruta Jaliu & Petru A. Simionescu, 2020. "A Generalized Approach to the Steady-State Efficiency Analysis of Torque-Adding Transmissions Used in Renewable Energy Systems," Energies, MDPI, vol. 13(17), pages 1-18, September.
    5. Radu Saulescu & Mircea Neagoe & Codruta Jaliu & Olimpiu Munteanu, 2021. "A Comparative Performance Analysis of Counter-Rotating Dual-Rotor Wind Turbines with Speed-Adding Increasers," Energies, MDPI, vol. 14(9), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mérida, Jován & Aguilar, Luis T. & Dávila, Jorge, 2014. "Analysis and synthesis of sliding mode control for large scale variable speed wind turbine for power optimization," Renewable Energy, Elsevier, vol. 71(C), pages 715-728.
    2. Fan, Zhixin & Zhu, Caichao, 2019. "The optimization and the application for the wind turbine power-wind speed curve," Renewable Energy, Elsevier, vol. 140(C), pages 52-61.
    3. Yolanda Vidal & Leonardo Acho & Ningsu Luo & Mauricio Zapateiro & Francesc Pozo, 2012. "Power Control Design for Variable-Speed Wind Turbines," Energies, MDPI, vol. 5(8), pages 1-18, August.
    4. Azizi, Askar & Nourisola, Hamid & Shoja-Majidabad, Sajjad, 2019. "Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller," Renewable Energy, Elsevier, vol. 135(C), pages 55-65.
    5. Nikita Tomin, 2023. "Robust Reinforcement Learning-Based Multiple Inputs and Multiple Outputs Controller for Wind Turbines," Mathematics, MDPI, vol. 11(14), pages 1-19, July.
    6. Chen, Jiahao & Hu, Zhiqiang & Liu, Geliang & Wan, Decheng, 2019. "Coupled aero-hydro-servo-elastic methods for floating wind turbines," Renewable Energy, Elsevier, vol. 130(C), pages 139-153.
    7. Han, Chenlu & Nagamune, Ryozo, 2020. "Platform position control of floating wind turbines using aerodynamic force," Renewable Energy, Elsevier, vol. 151(C), pages 896-907.
    8. Carbone, Giuseppe & Afferrante, Luciano, 2013. "A novel probabilistic approach to assess the blade throw hazard of wind turbines," Renewable Energy, Elsevier, vol. 51(C), pages 474-481.
    9. Amira Elkodama & Amr Ismaiel & A. Abdellatif & S. Shaaban & Shigeo Yoshida & Mostafa A. Rushdi, 2023. "Control Methods for Horizontal Axis Wind Turbines (HAWT): State-of-the-Art Review," Energies, MDPI, vol. 16(17), pages 1-32, September.
    10. Golnary, Farshad & Moradi, Hamed, 2022. "Identification of the dynamics of the drivetrain and estimating its unknown parts in a large scale wind turbine," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 50-69.
    11. Xiaoming Rui & Lubing Xie & Xiaochao Fan & Changkai Xiu, 2019. "Grid-Connected Control of Wind Turbine with Differential Speed Regulation Based on Fuzzy Decision Makings," Modern Applied Science, Canadian Center of Science and Education, vol. 13(9), pages 1-10, September.
    12. Gao, Richie & Gao, Zhiwei, 2016. "Pitch control for wind turbine systems using optimization, estimation and compensation," Renewable Energy, Elsevier, vol. 91(C), pages 501-515.
    13. Helsen, Jan & Vanhollebeke, Frederik & Marrant, Ben & Vandepitte, Dirk & Desmet, Wim, 2011. "Multibody modelling of varying complexity for modal behaviour analysis of wind turbine gearboxes," Renewable Energy, Elsevier, vol. 36(11), pages 3098-3113.
    14. Jain, Achin & Schildbach, Georg & Fagiano, Lorenzo & Morari, Manfred, 2015. "On the design and tuning of linear model predictive control for wind turbines," Renewable Energy, Elsevier, vol. 80(C), pages 664-673.
    15. Davila-Vilchis, J.M. & Mishra, R.S., 2014. "Performance of a hydrokinetic energy system using an axial-flux permanent magnet generator," Energy, Elsevier, vol. 65(C), pages 631-638.
    16. Rezaei, Mohammad M. & Behzad, Mehdi & Haddadpour, Hassan & Moradi, Hamed, 2015. "Development of a reduced order model for nonlinear analysis of the wind turbine blade dynamics," Renewable Energy, Elsevier, vol. 76(C), pages 264-282.
    17. Pereira, T.R. & Batista, N.C. & Fonseca, A.R.A. & Cardeira, C. & Oliveira, P. & Melicio, R., 2018. "Darrieus wind turbine prototype: Dynamic modeling parameter identification and control analysis," Energy, Elsevier, vol. 159(C), pages 961-976.
    18. Silvio Simani, 2015. "Overview of Modelling and Advanced Control Strategies for Wind Turbine Systems," Energies, MDPI, vol. 8(12), pages 1-24, November.
    19. Yu, Jin & Song, Yurun & Zhang, Huasen & Dong, Xiaohan, 2022. "Novel design of compound coupled hydro-mechanical transmission on heavy-duty vehicle for energy recycling," Energy, Elsevier, vol. 239(PD).
    20. Jin, Xin & Li, Lang & Ju, Wenbin & Zhang, Zhaolong & Yang, Xiangang, 2016. "Multibody modeling of varying complexity for dynamic analysis of large-scale wind turbines," Renewable Energy, Elsevier, vol. 90(C), pages 336-351.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:83:y:2015:i:c:p:78-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.