IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v86y2016icp1037-1044.html
   My bibliography  Save this article

Advanced point of common coupling voltage controllers for grid-connected solar photovoltaic (PV) systems

Author

Listed:
  • Perera, Brian
  • Ciufo, Philip
  • Perera, Sarath

Abstract

The voltage rise of the low voltage (LV) power distribution grid to which multiple solar photovoltaic (PV) systems are integrated is a critical technical problem that should be addressed. With PV systems that are integrated to the LV power distribution grid (with an R to X ratio greater than unity) via voltage source converters, the opportunity exists to regulate the respective point of common coupling (PCC) voltages by dynamically controlling the active and reactive power response of PV systems. In this paper, two closed-loop controllers that are able to regulate the PCC voltage by dynamically controlling the active and reactive power response of the PV system are presented. The design methodology is presented with considerable detail. The plant model of each controller is derived and the design procedure of each controller is explained in detail. By combining the dynamic active and reactive power controllers proposed in this paper, two novel operating strategies for PV systems, fixed minimum power factor operation and fixed maximum apparent power operation, are introduced. The latter operating strategy has been identified as the most efficient way of regulating the PCC voltage of a PV system. The simulation results and experimental validation confirm the accuracy of the derived plant models, the robustness of the designed controllers and the feasibility of implementing the proposed novel operating strategies in PV systems.

Suggested Citation

  • Perera, Brian & Ciufo, Philip & Perera, Sarath, 2016. "Advanced point of common coupling voltage controllers for grid-connected solar photovoltaic (PV) systems," Renewable Energy, Elsevier, vol. 86(C), pages 1037-1044.
  • Handle: RePEc:eee:renene:v:86:y:2016:i:c:p:1037-1044
    DOI: 10.1016/j.renene.2015.09.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115303050
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.09.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jung, Jaesung & Onen, Ahmet & Arghandeh, Reza & Broadwater, Robert P., 2014. "Coordinated control of automated devices and photovoltaic generators for voltage rise mitigation in power distribution circuits," Renewable Energy, Elsevier, vol. 66(C), pages 532-540.
    2. Tonkoski, Reinaldo & Lopes, Luiz A.C., 2011. "Impact of active power curtailment on overvoltage prevention and energy production of PV inverters connected to low voltage residential feeders," Renewable Energy, Elsevier, vol. 36(12), pages 3566-3574.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claudia Zanabria & Ali Tayyebi & Filip Pröstl Andrén & Johannes Kathan & Thomas Strasser, 2017. "Engineering Support for Handling Controller Conflicts in Energy Storage Systems Applications," Energies, MDPI, vol. 10(10), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A.S. Jameel Hassan & Umar Marikkar & G.W. Kasun Prabhath & Aranee Balachandran & W.G. Chaminda Bandara & Parakrama B. Ekanayake & Roshan I. Godaliyadda & Janaka B. Ekanayake, 2021. "A Sensitivity Matrix Approach Using Two-Stage Optimization for Voltage Regulation of LV Networks with High PV Penetration," Energies, MDPI, vol. 14(20), pages 1-24, October.
    2. Ranaweera, Iromi & Midtgård, Ole-Morten & Korpås, Magnus, 2017. "Distributed control scheme for residential battery energy storage units coupled with PV systems," Renewable Energy, Elsevier, vol. 113(C), pages 1099-1110.
    3. Hafiz, Faeza & Rodrigo de Queiroz, Anderson & Fajri, Poria & Husain, Iqbal, 2019. "Energy management and optimal storage sizing for a shared community: A multi-stage stochastic programming approach," Applied Energy, Elsevier, vol. 236(C), pages 42-54.
    4. Jung, Jaesung & Onen, Ahmet & Russell, Kevin & Broadwater, Robert P., 2015. "Local steady-state and quasi steady-state impact studies of high photovoltaic generation penetration in power distribution circuits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 569-583.
    5. Ahmet Onen, 2016. "Energy Saving of Conservation Voltage Reduction Based on Load-Voltage Dependency," Sustainability, MDPI, vol. 8(8), pages 1-11, August.
    6. Raman, P. & Murali, J. & Sakthivadivel, D. & Vigneswaran, V.S., 2012. "Opportunities and challenges in setting up solar photo voltaic based micro grids for electrification in rural areas of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3320-3325.
    7. Patsalides, Minas & Efthymiou, Venizelos & Stavrou, Andreas & Georghiou, George E., 2016. "A generic transient PV system model for power quality studies," Renewable Energy, Elsevier, vol. 89(C), pages 526-542.
    8. Zedequias Machado Alves & Renata Mota Martins & Gustavo Marchesan & Ghendy Cardoso Junior, 2022. "Metaheuristic for the Allocation and Sizing of PV-STATCOMs for Ancillary Service Provision," Energies, MDPI, vol. 16(1), pages 1-16, December.
    9. Chi-Thang Phan-Tan & Martin Hill, 2021. "Decentralized Optimal Control for Photovoltaic Systems Using Prediction in the Distribution Systems," Energies, MDPI, vol. 14(13), pages 1-21, July.
    10. Lindberg, O. & Birging, A. & Widén, J. & Lingfors, D., 2021. "PV park site selection for utility-scale solar guides combining GIS and power flow analysis: A case study on a Swedish municipality," Applied Energy, Elsevier, vol. 282(PA).
    11. Jung, Jaesung & Onen, Ahmet & Russell, Kevin & Broadwater, Robert P. & Steffel, Steve & Dinkel, Alex, 2015. "Configurable, Hierarchical, Model-based, Scheduling Control with photovoltaic generators in power distribution circuits," Renewable Energy, Elsevier, vol. 76(C), pages 318-329.
    12. Nizami, M.S.H. & Haque, A.N.M.M. & Nguyen, P.H. & Hossain, M.J., 2019. "On the application of Home Energy Management Systems for power grid support," Energy, Elsevier, vol. 188(C).
    13. Youssef Elomari & Masoud Norouzi & Marc Marín-Genescà & Alberto Fernández & Dieter Boer, 2022. "Integration of Solar Photovoltaic Systems into Power Networks: A Scientific Evolution Analysis," Sustainability, MDPI, vol. 14(15), pages 1-23, July.
    14. Luthander, Rasmus & Widén, Joakim & Munkhammar, Joakim & Lingfors, David, 2016. "Self-consumption enhancement and peak shaving of residential photovoltaics using storage and curtailment," Energy, Elsevier, vol. 112(C), pages 221-231.
    15. Stinner, Sebastian & Schlösser, Tim & Huchtemann, Kristian & Müller, Dirk & Monti, Antonello, 2017. "Primary energy evaluation of heat pumps considering dynamic boundary conditions in the energy system," Energy, Elsevier, vol. 138(C), pages 60-78.
    16. Huda, A.S.N. & Živanović, R., 2017. "Large-scale integration of distributed generation into distribution networks: Study objectives, review of models and computational tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 974-988.
    17. Cook, Tyson & Shaver, Lee & Arbaje, Paul, 2018. "Modeling constraints to distributed generation solar photovoltaic capacity installation in the US Midwest," Applied Energy, Elsevier, vol. 210(C), pages 1037-1050.
    18. Kolhe, Mohan Lal & Rasul, M.J.M.A., 2020. "3-Phase grid-connected building integrated photovoltaic system with reactive power control capability," Renewable Energy, Elsevier, vol. 154(C), pages 1065-1075.
    19. Guerrero, Jaysson & Gebbran, Daniel & Mhanna, Sleiman & Chapman, Archie C. & Verbič, Gregor, 2020. "Towards a transactive energy system for integration of distributed energy resources: Home energy management, distributed optimal power flow, and peer-to-peer energy trading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    20. Tsuanyo, David & Azoumah, Yao & Aussel, Didier & Neveu, Pierre, 2015. "Modeling and optimization of batteryless hybrid PV (photovoltaic)/Diesel systems for off-grid applications," Energy, Elsevier, vol. 86(C), pages 152-163.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:86:y:2016:i:c:p:1037-1044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.