IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i10p1595-d114957.html
   My bibliography  Save this article

Engineering Support for Handling Controller Conflicts in Energy Storage Systems Applications

Author

Listed:
  • Claudia Zanabria

    (Center for Energy–Electric Energy Systems, AIT Austrian Institute of Technology, 1210 Vienna, Austria)

  • Ali Tayyebi

    (Center for Energy–Electric Energy Systems, AIT Austrian Institute of Technology, 1210 Vienna, Austria)

  • Filip Pröstl Andrén

    (Center for Energy–Electric Energy Systems, AIT Austrian Institute of Technology, 1210 Vienna, Austria)

  • Johannes Kathan

    (Center for Energy–Electric Energy Systems, AIT Austrian Institute of Technology, 1210 Vienna, Austria)

  • Thomas Strasser

    (Center for Energy–Electric Energy Systems, AIT Austrian Institute of Technology, 1210 Vienna, Austria)

Abstract

Energy storage systems will play a major role in the decarbonization of future sustainable electric power systems, allowing a high penetration of distributed renewable energy sources and contributing to the distribution network stability and reliability. To accomplish this, a storage system is required to provide multiple services such as self-consumption, grid support, peak-shaving, etc. The simultaneous activation of controllers operation may lead to conflicts, as a consequence the execution of committed services is not guaranteed. This paper presents and discusses a solution to the exposed issue by developing an engineering support approach to semi-automatically detect and handle conflicts for multi-usage storage systems applications. To accomplish that an ontology is developed and exploited by model-driven engineering mechanisms. The proposed approach is evaluated by implementing a use case example, where detection of conflicts is automatically done at an early design stage. Besides this, exploitable source code for conflicts resolution is generated and used during the design and prototype stages of controllers development. Thus, the proposed engineering support enhances the design and development of storage system controllers, especially for multi-usage applications.

Suggested Citation

  • Claudia Zanabria & Ali Tayyebi & Filip Pröstl Andrén & Johannes Kathan & Thomas Strasser, 2017. "Engineering Support for Handling Controller Conflicts in Energy Storage Systems Applications," Energies, MDPI, vol. 10(10), pages 1-24, October.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1595-:d:114957
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/10/1595/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/10/1595/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Perera, Brian & Ciufo, Philip & Perera, Sarath, 2016. "Advanced point of common coupling voltage controllers for grid-connected solar photovoltaic (PV) systems," Renewable Energy, Elsevier, vol. 86(C), pages 1037-1044.
    2. Filip Pröstl Andrén & Thomas I. Strasser & Wolfgang Kastner, 2017. "Engineering Smart Grids: Applying Model-Driven Development from Use Case Design to Deployment," Energies, MDPI, vol. 10(3), pages 1-33, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joanna Kott & Marek Kott, 2019. "Generic Ontology of Energy Consumption Households," Energies, MDPI, vol. 12(19), pages 1-19, September.
    2. Shun-Chung Wang & Chun-Yu Liu & Yi-Hua Liu, 2018. "A Fast Equalizer with Adaptive Balancing Current Control," Energies, MDPI, vol. 11(5), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prinsloo, Gerro & Dobson, Robert & Mammoli, Andrea, 2018. "Synthesis of an intelligent rural village microgrid control strategy based on smartgrid multi-agent modelling and transactive energy management principles," Energy, Elsevier, vol. 147(C), pages 263-278.
    2. Mathias Uslar & Sebastian Rohjans & Christian Neureiter & Filip Pröstl Andrén & Jorge Velasquez & Cornelius Steinbrink & Venizelos Efthymiou & Gianluigi Migliavacca & Seppo Horsmanheimo & Helfried Bru, 2019. "Applying the Smart Grid Architecture Model for Designing and Validating System-of-Systems in the Power and Energy Domain: A European Perspective," Energies, MDPI, vol. 12(2), pages 1-40, January.
    3. Claudia Zanabria & Filip Pröstl Andrén & Thomas I. Strasser, 2018. "An Adaptable Engineering Support Framework for Multi-Functional Energy Storage System Applications," Sustainability, MDPI, vol. 10(11), pages 1-28, November.
    4. Michele Garau & Emilio Ghiani & Gianni Celli & Fabrizio Pilo & Sergio Corti, 2018. "Co-Simulation of Smart Distribution Network Fault Management and Reconfiguration with LTE Communication," Energies, MDPI, vol. 11(6), pages 1-17, May.
    5. Hrvoje Keserica & Stjepan Sučić & Tomislav Capuder, 2019. "Standards-Compliant Chat-Based Middleware Platform for Smart Grid Management," Energies, MDPI, vol. 12(4), pages 1-12, February.
    6. Davide Della Giustina & Amelia Alvarez de Sotomayor & Alessio Dedè & Francisco Ramos, 2020. "A Model-Based Design of Distributed Automation Systems for the Smart Grid: Implementation and Validation," Energies, MDPI, vol. 13(14), pages 1-19, July.
    7. Michael H. Spiegel & Eric M. S. P. Veith & Thomas I. Strasser, 2020. "The Spectrum of Proactive, Resilient Multi-Microgrid Scheduling: A Systematic Literature Review," Energies, MDPI, vol. 13(17), pages 1-37, September.
    8. Min Xiang & Jie Min & Zaiqian Wang & Pan Gao, 2017. "A Novel Fault Early Warning Model Based on Fault Gene Table for Smart Distribution Grids," Energies, MDPI, vol. 10(12), pages 1-22, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1595-:d:114957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.