IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v154y2020icp1065-1075.html
   My bibliography  Save this article

3-Phase grid-connected building integrated photovoltaic system with reactive power control capability

Author

Listed:
  • Kolhe, Mohan Lal
  • Rasul, M.J.M.A.

Abstract

Recently, a tendency in the growing of grid-connected building integrated photovoltaic (BIPV) systems has been noticed in most countries. Hence, high penetration of PV power into the system network can be observed in many points in the network. This may cause severe problems on the distribution network due to the intermittent nature of PV systems. As a feasible solution, the reactive power capability of voltage source inverter in PV systems can be employed rather than approaching expensive grid infrastructures in the distribution network. The purpose of this study is to implement a 3-phase grid-connected (BIPV) system with reactive power control to regulate the system voltage and improve the system power factor. Subsequent to this, a specific system model has been designed and developed in MATLAB Simulink application. The selection of PV system specifications is based on practical system implementation. The inverter control system along with the reactive power control has been developed for the proper system operation at different system conditions to reduce the var compensation on the utility grid. Better system accuracy of the developed system model has been found by validating with real system data. The overall system performance has indicated that the effective utilization of reactive power control of a grid-connected PV system yields to a stable, reliable and cost-effective system network operation which reduces the heavy burden on the utility grid to control the PV system effects.

Suggested Citation

  • Kolhe, Mohan Lal & Rasul, M.J.M.A., 2020. "3-Phase grid-connected building integrated photovoltaic system with reactive power control capability," Renewable Energy, Elsevier, vol. 154(C), pages 1065-1075.
  • Handle: RePEc:eee:renene:v:154:y:2020:i:c:p:1065-1075
    DOI: 10.1016/j.renene.2020.03.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120304006
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.03.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Collins, L. & Ward, J.K., 2015. "Real and reactive power control of distributed PV inverters for overvoltage prevention and increased renewable generation hosting capacity," Renewable Energy, Elsevier, vol. 81(C), pages 464-471.
    2. Howlader, Abdul Motin & Sadoyama, Staci & Roose, Leon R. & Sepasi, Saeed, 2018. "Distributed voltage regulation using Volt-Var controls of a smart PV inverter in a smart grid: An experimental study," Renewable Energy, Elsevier, vol. 127(C), pages 145-157.
    3. Tonkoski, Reinaldo & Lopes, Luiz A.C., 2011. "Impact of active power curtailment on overvoltage prevention and energy production of PV inverters connected to low voltage residential feeders," Renewable Energy, Elsevier, vol. 36(12), pages 3566-3574.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gilberto Lopes Filho & Henrique Pires Corrêa & Flávio Henrique Teles Vieira, 2023. "Distributed Reactive Power Injection-Based Approach for Minimization of Losses in Electrical Networks Considering Heuristic Algorithms and Voltage Deviation," Energies, MDPI, vol. 16(19), pages 1-12, September.
    2. Kumar, Vinit & Singh, Mukesh, 2021. "Reactive power compensation using derated power generation mode of modified P&O algorithm in grid-interfaced PV system," Renewable Energy, Elsevier, vol. 178(C), pages 108-117.
    3. Eroğlu, Fatih & Kurtoğlu, Mehmet & Eren, Ahmet & Vural, Ahmet Mete, 2023. "Multi-objective control strategy for multilevel converter based battery D-STATCOM with power quality improvement," Applied Energy, Elsevier, vol. 341(C).
    4. Talha, Muhammad & Raihan, S.R.S. & Rahim, N Abd, 2020. "PV inverter with decoupled active and reactive power control to mitigate grid faults," Renewable Energy, Elsevier, vol. 162(C), pages 877-892.
    5. da Silva Benedito, Ricardo & Zilles, Roberto & Pinho, João Tavares, 2021. "Overcoming the power factor apparent degradation of loads fed by photovoltaic distributed generators," Renewable Energy, Elsevier, vol. 164(C), pages 1364-1375.
    6. Hoseinzadeh, Siamak & Astiaso Garcia, Davide & Huang, Lizhen, 2023. "Grid-connected renewable energy systems flexibility in Norway islands’ Decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    7. Manuel Flota-Bañuelos & María Espinosa-Trujillo & José Cruz-Chan & Tariq Kamal, 2023. "Experimental Study of an Inverter Control for Reactive Power Compensation in a Grid-Connected Solar Photovoltaic System Using Sliding Mode Control," Energies, MDPI, vol. 16(2), pages 1-26, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stringer, Naomi & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2021. "Fair consumer outcomes in the balance: Data driven analysis of distributed PV curtailment," Renewable Energy, Elsevier, vol. 173(C), pages 972-986.
    2. Ranaweera, Iromi & Midtgård, Ole-Morten & Korpås, Magnus, 2017. "Distributed control scheme for residential battery energy storage units coupled with PV systems," Renewable Energy, Elsevier, vol. 113(C), pages 1099-1110.
    3. Heba M. Abdullah & Rashad M. Kamel & Anas Tahir & Azzam Sleit & Adel Gastli, 2020. "The Simultaneous Impact of EV Charging and PV Inverter Reactive Power on the Hosting Distribution System’s Performance: A Case Study in Kuwait," Energies, MDPI, vol. 13(17), pages 1-22, August.
    4. Chi-Thang Phan-Tan & Martin Hill, 2021. "Decentralized Optimal Control for Photovoltaic Systems Using Prediction in the Distribution Systems," Energies, MDPI, vol. 14(13), pages 1-21, July.
    5. Vergara, Pedro P. & Salazar, Mauricio & Mai, Tam T. & Nguyen, Phuong H. & Slootweg, Han, 2020. "A comprehensive assessment of PV inverters operating with droop control for overvoltage mitigation in LV distribution networks," Renewable Energy, Elsevier, vol. 159(C), pages 172-183.
    6. Megan Culler & Hannah Burroughs, 2021. "Cybersecurity Considerations for Grid-Connected Batteries with Hardware Demonstrations," Energies, MDPI, vol. 14(11), pages 1-20, May.
    7. A.S. Jameel Hassan & Umar Marikkar & G.W. Kasun Prabhath & Aranee Balachandran & W.G. Chaminda Bandara & Parakrama B. Ekanayake & Roshan I. Godaliyadda & Janaka B. Ekanayake, 2021. "A Sensitivity Matrix Approach Using Two-Stage Optimization for Voltage Regulation of LV Networks with High PV Penetration," Energies, MDPI, vol. 14(20), pages 1-24, October.
    8. Razavi, Seyed-Ehsan & Rahimi, Ehsan & Javadi, Mohammad Sadegh & Nezhad, Ali Esmaeel & Lotfi, Mohamed & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Impact of distributed generation on protection and voltage regulation of distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 157-167.
    9. Cho, Younghoon, 2017. "Dual-buck residential photovoltaic inverter with a high-accuracy repetitive current controller," Renewable Energy, Elsevier, vol. 101(C), pages 168-181.
    10. Stinner, Sebastian & Schlösser, Tim & Huchtemann, Kristian & Müller, Dirk & Monti, Antonello, 2017. "Primary energy evaluation of heat pumps considering dynamic boundary conditions in the energy system," Energy, Elsevier, vol. 138(C), pages 60-78.
    11. Matej Tazky & Michal Regula & Alena Otcenasova, 2021. "Impact of Changes in a Distribution Network Nature on the Capacitive Reactive Power Flow into the Transmission Network in Slovakia," Energies, MDPI, vol. 14(17), pages 1-16, August.
    12. Hafiz, Faeza & Rodrigo de Queiroz, Anderson & Fajri, Poria & Husain, Iqbal, 2019. "Energy management and optimal storage sizing for a shared community: A multi-stage stochastic programming approach," Applied Energy, Elsevier, vol. 236(C), pages 42-54.
    13. Lu, Qing & Yu, Hao & Zhao, Kangli & Leng, Yajun & Hou, Jianchao & Xie, Pinjie, 2019. "Residential demand response considering distributed PV consumption: A model based on China's PV policy," Energy, Elsevier, vol. 172(C), pages 443-456.
    14. Huda, A.S.N. & Živanović, R., 2017. "Large-scale integration of distributed generation into distribution networks: Study objectives, review of models and computational tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 974-988.
    15. Cook, Tyson & Shaver, Lee & Arbaje, Paul, 2018. "Modeling constraints to distributed generation solar photovoltaic capacity installation in the US Midwest," Applied Energy, Elsevier, vol. 210(C), pages 1037-1050.
    16. Bayer, Benjamin & Matschoss, Patrick & Thomas, Heiko & Marian, Adela, 2018. "The German experience with integrating photovoltaic systems into the low-voltage grids," Renewable Energy, Elsevier, vol. 119(C), pages 129-141.
    17. Allard, Stéphane & Debusschere, Vincent & Mima, Silvana & Quoc, Tuan Tran & Hadjsaid, Nouredine & Criqui, Patrick, 2020. "Considering distribution grids and local flexibilities in the prospective development of the European power system by 2050," Applied Energy, Elsevier, vol. 270(C).
    18. Horowitz, Kelsey A.W. & Palmintier, Bryan & Mather, Barry & Denholm, Paul, 2018. "Distribution system costs associated with the deployment of photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 420-433.
    19. Paschalis A. Gkaidatzis & Aggelos S. Bouhouras & Kallisthenis I. Sgouras & Dimitrios I. Doukas & Georgios C. Christoforidis & Dimitris P. Labridis, 2019. "Efficient RES Penetration under Optimal Distributed Generation Placement Approach," Energies, MDPI, vol. 12(7), pages 1-32, April.
    20. Raman, P. & Murali, J. & Sakthivadivel, D. & Vigneswaran, V.S., 2012. "Opportunities and challenges in setting up solar photo voltaic based micro grids for electrification in rural areas of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3320-3325.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:154:y:2020:i:c:p:1065-1075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.