IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v83y2015icp1245-1249.html
   My bibliography  Save this article

Advanced supercritical Methyl acetate method for biodiesel production from Pongamia pinnata oil

Author

Listed:
  • Goembira, Fadjar
  • Saka, Shiro

Abstract

At present, alkali-catalyzed transesterification process is widely used in biodiesel production. However, in this process up to 88% of total production cost is for the feedstock, due to the requirement of using low free fatty acid (FFA) content feedstocks that are commonly attributed to refined edible plant-oils. This work was, therefore, carried out to know the potential use of non-edible Pongamia pinnata oil in biodiesel production. Instead of using a transesterification, this work applied an interesterification process called one-step supercritical methyl acetate method under reaction condition of 300 °C/20 MPa/45 min/42 M ratio in methyl acetate to oil. In this glycerol-free method, 10wt% aqueous acetic acid was added as an additive to proceed the interesterification process under such reaction condition. It was found out that high FFA content in Pongamia pinnata oil did not give any adverse effect on the process as the highest yield of 96.6wt% FAME and 11.5wt% triacetin (total 108.1wt%) was achievable. Both products were miscible and their evaluation on biodiesel properties showed the compliance towards biodiesel standards.

Suggested Citation

  • Goembira, Fadjar & Saka, Shiro, 2015. "Advanced supercritical Methyl acetate method for biodiesel production from Pongamia pinnata oil," Renewable Energy, Elsevier, vol. 83(C), pages 1245-1249.
  • Handle: RePEc:eee:renene:v:83:y:2015:i:c:p:1245-1249
    DOI: 10.1016/j.renene.2015.06.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115300458
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.06.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Lin & Cunshan, Zhou & Vittayapadung, Saritporn & Xiangqian, Shen & Mingdong, Dong, 2011. "Opportunities and challenges for biodiesel fuel," Applied Energy, Elsevier, vol. 88(4), pages 1020-1031, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sajjadi, Baharak & Raman, Abdul Aziz Abdul & Arandiyan, Hamidreza, 2016. "A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 62-92.
    2. Abedin, M.J. & Kalam, M.A. & Masjuki, H.H. & Sabri, M.F.M. & Rahman, S.M. Ashrafur & Sanjid, A. & Fattah, I.M. Rizwanul, 2016. "Production of biodiesel from a non-edible source and study of its combustion, and emission characteristics: A comparative study with B5," Renewable Energy, Elsevier, vol. 88(C), pages 20-29.
    3. Radosław Ciesielski & Mateusz Zakrzewski & Oleksandr Shtyka & Tomasz Maniecki & Adam Rylski & Marek Wozniak & Przemyslaw Kubiak & Krzysztof Siczek, 2022. "The Research on Characteristics of CI Engine Supplied with Biodiesels from Brown and Yellow Grease," Energies, MDPI, vol. 15(11), pages 1-17, June.
    4. Abraham Casas & Ángel Pérez & María Jesús Ramos, 2021. "Purification of Methyl Acetate/Water Mixtures from Chemical Interesterification of Vegetable Oils by Pervaporation," Energies, MDPI, vol. 14(3), pages 1-10, February.
    5. Arumugam, A. & Thulasidharan, D. & Jegadeesan, Gautham B., 2018. "Process optimization of biodiesel production from Hevea brasiliensis oil using lipase immobilized on spherical silica aerogel," Renewable Energy, Elsevier, vol. 116(PA), pages 755-761.
    6. Keskin, Ahmet, 2018. "Two-step methyl ester production and characterization from the broiler rendering fat: The optimization of the first step," Renewable Energy, Elsevier, vol. 122(C), pages 216-224.
    7. Laskar, Ikbal Bahar & Deshmukhya, Tuhin & Bhanja, Piyali & Paul, Bappi & Gupta, Rajat & Chatterjee, Sushovan, 2020. "Transesterification of soybean oil at room temperature using biowaste as catalyst; an experimental investigation on the effect of co-solvent on biodiesel yield," Renewable Energy, Elsevier, vol. 162(C), pages 98-111.
    8. Nam Seon Kang & Kichul Cho & Sung Min An & Eun Song Kim & Hyunji Ki & Chung Hyeon Lee & Grace Choi & Ji Won Hong, 2022. "Taxonomic and Biochemical Characterization of Microalga Graesiella emersonii GEGS21 for Its Potential to Become Feedstock for Biofuels and Bioproducts," Energies, MDPI, vol. 15(22), pages 1-24, November.
    9. Faleh, Nahla & Khila, Zouhour & Wahada, Zeineb & Pons, Marie-Noëlle & Houas, Ammar & Hajjaji, Noureddine, 2018. "Exergo-environmental life cycle assessment of biodiesel production from mutton tallow transesterification," Renewable Energy, Elsevier, vol. 127(C), pages 74-83.
    10. Wong, Wan-Ying & Lim, Steven & Pang, Yean-Ling & Shuit, Siew-Hoong & Lam, Man-Kee & Tan, Inn-Shi & Chen, Wei-Hsin, 2023. "A comprehensive review of the production methods and effect of parameters for glycerol-free biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    11. Rafael Estevez & Laura Aguado-Deblas & Francisco J. López-Tenllado & Carlos Luna & Juan Calero & Antonio A. Romero & Felipa M. Bautista & Diego Luna, 2022. "Biodiesel Is Dead: Long Life to Advanced Biofuels—A Comprehensive Critical Review," Energies, MDPI, vol. 15(9), pages 1-39, April.
    12. Brondani, L.N. & Ribeiro, J.S. & Castilhos, F., 2020. "A new kinetic model for simultaneous interesterification and esterification reactions from methyl acetate and highly acidic oil," Renewable Energy, Elsevier, vol. 156(C), pages 579-590.
    13. Ruhul, A.M. & Kalam, M.A. & Masjuki, H.H. & Shahir, S.A. & Alabdulkarem, Abdullah & Teoh, Y.H. & How, H.G. & Reham, S.S., 2017. "Evaluating combustion, performance and emission characteristics of Millettia pinnata and Croton megalocarpus biodiesel blends in a diesel engine," Energy, Elsevier, vol. 141(C), pages 2362-2376.
    14. Niu, Shengli & Yu, Hewei & Zhao, Shuang & Zhang, Xiangyu & Li, Ximing & Han, Kuihua & Lu, Chunmei & Wang, Yongzheng, 2019. "Apparent kinetic and thermodynamic calculation for thermal degradation of stearic acid and its esterification derivants through thermogravimetric analysis," Renewable Energy, Elsevier, vol. 133(C), pages 373-381.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bora, Plaban & Konwar, Lakhya Jyoti & Boro, Jutika & Phukan, Mayur Mausoom & Deka, Dhanapati & Konwar, Bolin Kumar, 2014. "Hybrid biofuels from non-edible oils: A comparative standpoint with corresponding biodiesel," Applied Energy, Elsevier, vol. 135(C), pages 450-460.
    2. Thanh Xuan NguyenThi & Jean-Patrick Bazile & David Bessières, 2018. "Density Measurements of Waste Cooking Oil Biodiesel and Diesel Blends Over Extended Pressure and Temperature Ranges," Energies, MDPI, vol. 11(5), pages 1-14, May.
    3. Peralta-Ruiz, Y. & González-Delgado, A.-D. & Kafarov, V., 2013. "Evaluation of alternatives for microalgae oil extraction based on exergy analysis," Applied Energy, Elsevier, vol. 101(C), pages 226-236.
    4. Hongbo Liu & Shuanglu Liang, 2019. "The Nexus between Energy Consumption, Biodiversity, and Economic Growth in Lancang-Mekong Cooperation (LMC): Evidence from Cointegration and Granger Causality Tests," IJERPH, MDPI, vol. 16(18), pages 1-15, September.
    5. Ko, Ja Kyong & Lee, Jae Hoon & Jung, Je Hyeong & Lee, Sun-Mi, 2020. "Recent advances and future directions in plant and yeast engineering to improve lignocellulosic biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Aytav, Emre & Kocar, Günnur, 2013. "Biodiesel from the perspective of Turkey: Past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 335-350.
    7. Liu, Yang & Cheng, Xiaobei & Qin, Longjiang & Wang, Xin & Yao, Junjie & Wu, Hui, 2020. "Experimental investigation on soot formation characteristics of n-heptane/butanol isomers blends in laminar diffusion flames," Energy, Elsevier, vol. 211(C).
    8. Ida Farida & Faurani Santi Singagerda, 2021. "Volatilitiy of World Food Commodity Prices and Renewable Fuel Standard Policy," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 516-527.
    9. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    10. Mohammad Anwar & Mohammad G. Rasul & Nanjappa Ashwath & Md Mofijur Rahman, 2018. "Optimisation of Second-Generation Biodiesel Production from Australian Native Stone Fruit Oil Using Response Surface Method," Energies, MDPI, vol. 11(10), pages 1-18, September.
    11. Azeem, Muhammad Waqar & Hanif, Muhammad Asif & Al-Sabahi, Jamal Nasar & Khan, Asif Ali & Naz, Saima & Ijaz, Aliya, 2016. "Production of biodiesel from low priced, renewable and abundant date seed oil," Renewable Energy, Elsevier, vol. 86(C), pages 124-132.
    12. Musa, S. Danlami & Zhonghua, Tang & Ibrahim, Abdullateef O. & Habib, Mukhtar, 2018. "China's energy status: A critical look at fossils and renewable options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2281-2290.
    13. Adepoju, T.F. & Ibeh, M.A. & Udoetuk, E.N. & Babatunde, E.O., 2021. "Quaternary blend of Carica papaya - Citrus sinesis - Hibiscus sabdariffa - Waste used oil for biodiesel synthesis using CaO-based catalyst derived from binary mix of Lattorina littorea and Mactra cora," Renewable Energy, Elsevier, vol. 171(C), pages 22-33.
    14. D’Alfonso, Tiziana & Jiang, Changmin & Bracaglia, Valentina, 2015. "Would competition between air transport and high-speed rail benefit environment and social welfare?," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 118-137.
    15. Manish Kumar & Varun Kumar Singh & Abhishek Sharma & Naushad Ahmad Ansari & Raghvendra Gautam & Yashvir Singh, 2022. "Effect of fuel injection pressure and EGR techniques on various engine performance and emission characteristics on a CRDI diesel engine when run with linseed oil methyl ester," Energy & Environment, , vol. 33(1), pages 41-63, February.
    16. Hoang-Tuong Nguyen Hao & Obulisamy Parthiba Karthikeyan & Kirsten Heimann, 2015. "Bio-Refining of Carbohydrate-Rich Food Waste for Biofuels," Energies, MDPI, vol. 8(7), pages 1-15, June.
    17. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    18. Yano Surya Pradana & I Gusti B. N. Makertihartha & Antonius Indarto & Tirto Prakoso & Tatang Hernas Soerawidjaja, 2024. "A Review of Biodiesel Cold Flow Properties and Its Improvement Methods: Towards Sustainable Biodiesel Application," Energies, MDPI, vol. 17(18), pages 1-43, September.
    19. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    20. kumar, Mukesh & Sharma, Mahendra Pal, 2016. "Selection of potential oils for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1129-1138.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:83:y:2015:i:c:p:1245-1249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.