IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i3p775-d491485.html
   My bibliography  Save this article

Purification of Methyl Acetate/Water Mixtures from Chemical Interesterification of Vegetable Oils by Pervaporation

Author

Listed:
  • Abraham Casas

    (CTC Technology Centre, Scientific and Technological Park of Cantabria (PCTCAN), c/ Isabel Torres 1, 39011 Santander, Spain)

  • Ángel Pérez

    (Department of Chemical Engineering, Institute for Chemical and Environmental Technology (ITQUIMA), University of Castilla-La Mancha, Avd. Camilo José Cela 1A, 13005 Ciudad Real, Spain)

  • María Jesús Ramos

    (Department of Chemical Engineering, Institute for Chemical and Environmental Technology (ITQUIMA), University of Castilla-La Mancha, Avd. Camilo José Cela 1A, 13005 Ciudad Real, Spain)

Abstract

Biodiesel production through chemical interesterification of triglycerides requires an excess of methyl acetate that must be recovered once the reaction is finished and the catalyst is neutralized. The present study concerns with the purification of methyl acetate by pervaporation. PERVAP 2201 was chosen as pervaporation membrane due to its high hydrophilic character that makes it suitable for the elimination of water in methyl acetate. Runs were started from concentrations in the feed of 2–8 wt.% of water and working temperatures close to the boiling point of methyl acetate (50, 60, and 70 °C), to get the main design parameters, i.e., permeate flux and selectivity. High temperature favored the permeate flux without compromising the selectivity. However, the flux declines significantly when water contained in the feed is below 2 wt.%. This implies that pervaporation should be used, only to decrease the water content to a value lower than in the azeotrope (2.3% by weight). A solution-diffusion model relating the flux of the permeating compound with the activity of the compound in the feed and the operating temperature has been proposed. The model obtained can be used in the design of the pervaporation stage, thus allowing to know the permeate flux for the different operating conditions.

Suggested Citation

  • Abraham Casas & Ángel Pérez & María Jesús Ramos, 2021. "Purification of Methyl Acetate/Water Mixtures from Chemical Interesterification of Vegetable Oils by Pervaporation," Energies, MDPI, vol. 14(3), pages 1-10, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:775-:d:491485
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/3/775/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/3/775/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Goembira, Fadjar & Saka, Shiro, 2015. "Advanced supercritical Methyl acetate method for biodiesel production from Pongamia pinnata oil," Renewable Energy, Elsevier, vol. 83(C), pages 1245-1249.
    2. Brondani, L.N. & Ribeiro, J.S. & Castilhos, F., 2020. "A new kinetic model for simultaneous interesterification and esterification reactions from methyl acetate and highly acidic oil," Renewable Energy, Elsevier, vol. 156(C), pages 579-590.
    3. Kampars, Valdis & Abelniece, Zane & Lazdovica, Kristine & Kampare, Ruta, 2020. "Interesterification of rapeseed oil with methyl acetate in the presence of potassium tert-butoxide solution in tetrahydrofuran," Renewable Energy, Elsevier, vol. 158(C), pages 668-674.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wong, Wan-Ying & Lim, Steven & Pang, Yean-Ling & Shuit, Siew-Hoong & Lam, Man-Kee & Tan, Inn-Shi & Chen, Wei-Hsin, 2023. "A comprehensive review of the production methods and effect of parameters for glycerol-free biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    2. Rafael Estevez & Laura Aguado-Deblas & Francisco J. López-Tenllado & Carlos Luna & Juan Calero & Antonio A. Romero & Felipa M. Bautista & Diego Luna, 2022. "Biodiesel Is Dead: Long Life to Advanced Biofuels—A Comprehensive Critical Review," Energies, MDPI, vol. 15(9), pages 1-39, April.
    3. Makarevičienė, Violeta & Kazancev, Kiril & Sendžikienė, Eglė & Gumbytė, Milda, 2024. "Application of simultaneous rapeseed oil extraction and interesterification with methyl formate using enzymatic catalyst," Renewable Energy, Elsevier, vol. 227(C).
    4. Abedin, M.J. & Kalam, M.A. & Masjuki, H.H. & Sabri, M.F.M. & Rahman, S.M. Ashrafur & Sanjid, A. & Fattah, I.M. Rizwanul, 2016. "Production of biodiesel from a non-edible source and study of its combustion, and emission characteristics: A comparative study with B5," Renewable Energy, Elsevier, vol. 88(C), pages 20-29.
    5. Nam Seon Kang & Kichul Cho & Sung Min An & Eun Song Kim & Hyunji Ki & Chung Hyeon Lee & Grace Choi & Ji Won Hong, 2022. "Taxonomic and Biochemical Characterization of Microalga Graesiella emersonii GEGS21 for Its Potential to Become Feedstock for Biofuels and Bioproducts," Energies, MDPI, vol. 15(22), pages 1-24, November.
    6. Keskin, Ahmet, 2018. "Two-step methyl ester production and characterization from the broiler rendering fat: The optimization of the first step," Renewable Energy, Elsevier, vol. 122(C), pages 216-224.
    7. Arumugam, A. & Thulasidharan, D. & Jegadeesan, Gautham B., 2018. "Process optimization of biodiesel production from Hevea brasiliensis oil using lipase immobilized on spherical silica aerogel," Renewable Energy, Elsevier, vol. 116(PA), pages 755-761.
    8. Laskar, Ikbal Bahar & Deshmukhya, Tuhin & Bhanja, Piyali & Paul, Bappi & Gupta, Rajat & Chatterjee, Sushovan, 2020. "Transesterification of soybean oil at room temperature using biowaste as catalyst; an experimental investigation on the effect of co-solvent on biodiesel yield," Renewable Energy, Elsevier, vol. 162(C), pages 98-111.
    9. Brondani, L.N. & Ribeiro, J.S. & Castilhos, F., 2020. "A new kinetic model for simultaneous interesterification and esterification reactions from methyl acetate and highly acidic oil," Renewable Energy, Elsevier, vol. 156(C), pages 579-590.
    10. Radosław Ciesielski & Mateusz Zakrzewski & Oleksandr Shtyka & Tomasz Maniecki & Adam Rylski & Marek Wozniak & Przemyslaw Kubiak & Krzysztof Siczek, 2022. "The Research on Characteristics of CI Engine Supplied with Biodiesels from Brown and Yellow Grease," Energies, MDPI, vol. 15(11), pages 1-17, June.
    11. Ruhul, A.M. & Kalam, M.A. & Masjuki, H.H. & Shahir, S.A. & Alabdulkarem, Abdullah & Teoh, Y.H. & How, H.G. & Reham, S.S., 2017. "Evaluating combustion, performance and emission characteristics of Millettia pinnata and Croton megalocarpus biodiesel blends in a diesel engine," Energy, Elsevier, vol. 141(C), pages 2362-2376.
    12. Faleh, Nahla & Khila, Zouhour & Wahada, Zeineb & Pons, Marie-Noëlle & Houas, Ammar & Hajjaji, Noureddine, 2018. "Exergo-environmental life cycle assessment of biodiesel production from mutton tallow transesterification," Renewable Energy, Elsevier, vol. 127(C), pages 74-83.
    13. Niu, Shengli & Yu, Hewei & Zhao, Shuang & Zhang, Xiangyu & Li, Ximing & Han, Kuihua & Lu, Chunmei & Wang, Yongzheng, 2019. "Apparent kinetic and thermodynamic calculation for thermal degradation of stearic acid and its esterification derivants through thermogravimetric analysis," Renewable Energy, Elsevier, vol. 133(C), pages 373-381.
    14. Sajjadi, Baharak & Raman, Abdul Aziz Abdul & Arandiyan, Hamidreza, 2016. "A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 62-92.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:775-:d:491485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.