IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v189y2019ics0360544219318365.html
   My bibliography  Save this article

Multi-objective optimization of solar powered adsorption chiller combined with river water heat pump system for air conditioning and space heating application

Author

Listed:
  • Li, Rui
  • Dai, Yanjun
  • Cui, Guomin

Abstract

Multi-energy system is currently under rapid development due to their potential to reduce the use of fossil fuel resources and improve system stability. A systematic simulation-based, multi-objective optimization model of for solar hybrid heat pump heating and cooling system is presented. A combined energy, economic and environmental analysis of the system is conducted to calculate the primary energy use as well as the levelized total annual cost. A multi-objective optimization model is formulated using a genetic algorithm to simultaneously minimize these objective. Linear programming technique for multidimensional analysis of preference (LINMAP) is used to select the optimal point from the Pareto front. A sensitivity analysis is also performed to assess the influence of fuel cost, capital cost of innovative components and the annual interest rate on the Pareto front of the optimal solution.

Suggested Citation

  • Li, Rui & Dai, Yanjun & Cui, Guomin, 2019. "Multi-objective optimization of solar powered adsorption chiller combined with river water heat pump system for air conditioning and space heating application," Energy, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219318365
    DOI: 10.1016/j.energy.2019.116141
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219318365
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Sunliang & Hasan, Ala & Sirén, Kai, 2014. "Matching analysis for on-site hybrid renewable energy systems of office buildings with extended indices," Applied Energy, Elsevier, vol. 113(C), pages 230-247.
    2. Calise, Francesco & Dentice d'Accadia, Massimo & Figaj, Rafal Damian & Vanoli, Laura, 2016. "A novel solar-assisted heat pump driven by photovoltaic/thermal collectors: Dynamic simulation and thermoeconomic optimization," Energy, Elsevier, vol. 95(C), pages 346-366.
    3. Poppi, Stefano & Bales, Chris & Haller, Michel Y. & Heinz, Andreas, 2016. "Influence of boundary conditions and component size on electricity demand in solar thermal and heat pump combisystems," Applied Energy, Elsevier, vol. 162(C), pages 1062-1073.
    4. Fabrizio, Enrico & Corrado, Vincenzo & Filippi, Marco, 2010. "A model to design and optimize multi-energy systems in buildings at the design concept stage," Renewable Energy, Elsevier, vol. 35(3), pages 644-655.
    5. Milan, Christian & Bojesen, Carsten & Nielsen, Mads Pagh, 2012. "A cost optimization model for 100% renewable residential energy supply systems," Energy, Elsevier, vol. 48(1), pages 118-127.
    6. Panaras, G. & Mathioulakis, E. & Belessiotis, V., 2014. "A method for the dynamic testing and evaluation of the performance of combined solar thermal heat pump hot water systems," Applied Energy, Elsevier, vol. 114(C), pages 124-134.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Li & Guomin Cui, 2022. "Comprehensive Performance Evaluation of a Dual-Function Active Solar Thermal Façade System Based on Energy, Economic and Environmental Analysis in China," Energies, MDPI, vol. 15(11), pages 1-19, June.
    2. Sui, Yunren & Lin, Haosheng & Ding, Zhixiong & Li, Fuxiang & Sui, Zengguang & Wu, Wei, 2024. "Compact, efficient, and affordable absorption Carnot battery for long-term renewable energy storage," Applied Energy, Elsevier, vol. 357(C).
    3. Zurita, Adriana & Mata-Torres, Carlos & Cardemil, José M. & Guédez, Rafael & Escobar, Rodrigo A., 2021. "Multi-objective optimal design of solar power plants with storage systems according to dispatch strategy," Energy, Elsevier, vol. 237(C).
    4. Afzal, Asif & Buradi, Abdulrajak & Jilte, Ravindra & Shaik, Saboor & Kaladgi, Abdul Razak & Arıcı, Muslum & Lee, Chew Tin & Nižetić, Sandro, 2023. "Optimizing the thermal performance of solar energy devices using meta-heuristic algorithms: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    5. Wang, Qiaochu & Ding, Yan & Kong, Xiangfei & Tian, Zhe & Xu, Linrui & He, Qing, 2022. "Load pattern recognition based optimization method for energy flexibility in office buildings," Energy, Elsevier, vol. 254(PC).
    6. Chauhan, P.R. & Kaushik, S.C. & Tyagi, S.K., 2022. "Current status and technological advancements in adsorption refrigeration systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part-B: Applications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 124-155.
    2. Wang, Zhangyuan & Guo, Peng & Zhang, Haijing & Yang, Wansheng & Mei, Sheng, 2017. "Comprehensive review on the development of SAHP for domestic hot water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 871-881.
    3. Franco, Alessandro & Fantozzi, Fabio, 2016. "Experimental analysis of a self consumption strategy for residential building: The integration of PV system and geothermal heat pump," Renewable Energy, Elsevier, vol. 86(C), pages 1075-1085.
    4. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    5. Sharafi, Masoud & ElMekkawy, Tarek Y. & Bibeau, Eric L., 2015. "Optimal design of hybrid renewable energy systems in buildings with low to high renewable energy ratio," Renewable Energy, Elsevier, vol. 83(C), pages 1026-1042.
    6. Colclough, Shane & McGrath, Teresa, 2015. "Net energy analysis of a solar combi system with Seasonal Thermal Energy Store," Applied Energy, Elsevier, vol. 147(C), pages 611-616.
    7. Cheng, Yaohua & Zhang, Ning & Kirschen, Daniel S. & Huang, Wujing & Kang, Chongqing, 2020. "Planning multiple energy systems for low-carbon districts with high penetration of renewable energy: An empirical study in China," Applied Energy, Elsevier, vol. 261(C).
    8. Jorge E. De León-Ruiz & Ignacio Carvajal-Mariscal & Antonin Ponsich, 2019. "Feasibility Analysis and Performance Evaluation and Optimization of a DXSAHP Water Heater Based on the Thermal Capacity of the System: A Case Study," Energies, MDPI, vol. 12(20), pages 1-38, October.
    9. Yanfeng Liu & Yaxing Wang & Xi Luo, 2020. "Design and Operation Optimization of Distributed Solar Energy System Based on Dynamic Operation Strategy," Energies, MDPI, vol. 14(1), pages 1-26, December.
    10. Calise, Francesco & Dentice d'Accadia, Massimo & Libertini, Luigi & Quiriti, Edoardo & Vicidomini, Maria, 2017. "A novel tool for thermoeconomic analysis and optimization of trigeneration systems: A case study for a hospital building in Italy," Energy, Elsevier, vol. 126(C), pages 64-87.
    11. Alobaid, Mohammad & Hughes, Ben & Calautit, John Kaiser & O’Connor, Dominic & Heyes, Andrew, 2017. "A review of solar driven absorption cooling with photovoltaic thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 728-742.
    12. Kazemdehdashti, A. & Mohammadi, M. & Seifi, A.R. & Rastegar, M., 2020. "Stochastic energy management in multi-carrier residential energy systems," Energy, Elsevier, vol. 202(C).
    13. Jungwon Yoon & Sanghyun Bae, 2020. "Performance Evaluation and Design of Thermo-Responsive SMP Shading Prototypes," Sustainability, MDPI, vol. 12(11), pages 1-35, May.
    14. Sameti, Mohammad & Haghighat, Fariborz, 2018. "Integration of distributed energy storage into net-zero energy district systems: Optimum design and operation," Energy, Elsevier, vol. 153(C), pages 575-591.
    15. McKenna, Russell & Merkel, Erik & Fichtner, Wolf, 2017. "Energy autonomy in residential buildings: A techno-economic model-based analysis of the scale effects," Applied Energy, Elsevier, vol. 189(C), pages 800-815.
    16. Marrasso, E. & Roselli, C. & Sasso, M. & Tariello, F., 2019. "Comparison of centralized and decentralized air-conditioning systems for a multi-storey/multi users building integrated with electric and diesel vehicles and considering the evolution of the national ," Energy, Elsevier, vol. 177(C), pages 319-333.
    17. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    18. De Boeck, L. & Verbeke, S. & Audenaert, A. & De Mesmaeker, L., 2015. "Improving the energy performance of residential buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 960-975.
    19. Capone, Martina & Guelpa, Elisa & Verda, Vittorio, 2021. "Multi-objective optimization of district energy systems with demand response," Energy, Elsevier, vol. 227(C).
    20. Francesca Ceglia & Adriano Macaluso & Elisa Marrasso & Carlo Roselli & Laura Vanoli, 2020. "Energy, Environmental, and Economic Analyses of Geothermal Polygeneration System Using Dynamic Simulations," Energies, MDPI, vol. 13(18), pages 1-34, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219318365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.