IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v162y2020icp2056-2065.html
   My bibliography  Save this article

Extraction of microalgal oil from Nannochloropsis oceanica by potassium hydroxide-assisted solvent extraction for heterogeneous transesterification

Author

Listed:
  • Park, Ji-Yeon
  • Kim, Min-Cheol
  • Cheng, Jun
  • Yang, Weijuan
  • Kim, Deog-Keun

Abstract

The feasibility of potassium hydroxide for simultaneous removal of chlorophyll during solvent extraction from wet microalgae (200 g/L) was evaluated. Extracted oil was converted to biodiesel by ZSM-5-based heterogeneous catalysts. The total oil (fatty acid-based) content of Nannochlorposis oceanica cultivated in open raceway ponds was 19.5%. The oil recovery yields from dry and wet microalgae using hexane were 44.4 and 11.8%, respectively, whereas using a hexane-methanol mixture were increased to 79.3 and 74.8%, respectively. For the heterogeneous transesterification of microalgal oil extracted by the hexane-methanol mixture from wet microalgae, the fatty acid methyl ester (FAME) contents were 2.3, 48.3, and 4.7% of product recovered after reaction for ZSM-5, Na/ZSM-5, and SO42−/ZSM-5, respectively; by the potassium hydroxide-assisted process, the corresponding FAME contents were increased to 21.9, 86.2, and 86.0%, respectively, due to improvement of the oil properties by the decrease of the chlorophyll content. Through the addition of potassium hydroxide, chlorophyll was effectively removed from oil, and eventually, the biodiesel conversion was sharply increased with heterogeneous Na/ZSM-5 and SO42−/ZSM-5 catalysts.

Suggested Citation

  • Park, Ji-Yeon & Kim, Min-Cheol & Cheng, Jun & Yang, Weijuan & Kim, Deog-Keun, 2020. "Extraction of microalgal oil from Nannochloropsis oceanica by potassium hydroxide-assisted solvent extraction for heterogeneous transesterification," Renewable Energy, Elsevier, vol. 162(C), pages 2056-2065.
  • Handle: RePEc:eee:renene:v:162:y:2020:i:c:p:2056-2065
    DOI: 10.1016/j.renene.2020.10.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120316153
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.10.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Jiaxin & Li, Ji & Dong, Wenyi & Zhang, Xiaolei & Tyagi, Rajeshwar D. & Drogui, Patrick & Surampalli, Rao Y., 2018. "The potential of microalgae in biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 336-346.
    2. Cho, Hyeon-Soo & Oh, You-Kwan & Park, Soon-Chul & Lee, Jae-Wook & Park, Ji-Yeon, 2013. "Effects of enzymatic hydrolysis on lipid extraction from Chlorella vulgaris," Renewable Energy, Elsevier, vol. 54(C), pages 156-160.
    3. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    4. de Jesus, Sérgio S. & Ferreira, Gabriela F. & Moreira, Larissa S. & Wolf Maciel, Maria Regina & Maciel Filho, Rubens, 2019. "Comparison of several methods for effective lipid extraction from wet microalgae using green solvents," Renewable Energy, Elsevier, vol. 143(C), pages 130-141.
    5. Galadima, Ahmad & Muraza, Oki, 2014. "Biodiesel production from algae by using heterogeneous catalysts: A critical review," Energy, Elsevier, vol. 78(C), pages 72-83.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Jesus, Sérgio S. & Ferreira, Gabriela F. & Moreira, Larissa S. & Filho, Rubens Maciel, 2020. "Biodiesel production from microalgae by direct transesterification using green solvents," Renewable Energy, Elsevier, vol. 160(C), pages 1283-1294.
    2. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    3. Fazril Ideris & Mohd Faiz Muaz Ahmad Zamri & Abd Halim Shamsuddin & Saifuddin Nomanbhay & Fitranto Kusumo & Islam Md Rizwanul Fattah & Teuku Meurah Indra Mahlia, 2022. "Progress on Conventional and Advanced Techniques of In Situ Transesterification of Microalgae Lipids for Biodiesel Production," Energies, MDPI, vol. 15(19), pages 1-32, September.
    4. Zhu, Liandong & Nugroho, Y.K. & Shakeel, S.R. & Li, Zhaohua & Martinkauppi, B. & Hiltunen, E., 2017. "Using microalgae to produce liquid transportation biodiesel: What is next?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 391-400.
    5. Rastogi, Rajesh P. & Pandey, Ashok & Larroche, Christian & Madamwar, Datta, 2018. "Algal Green Energy – R&D and technological perspectives for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2946-2969.
    6. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.
    7. Emilia Neag & Zamfira Stupar & S. Andrada Maicaneanu & Cecilia Roman, 2023. "Advances in Biodiesel Production from Microalgae," Energies, MDPI, vol. 16(3), pages 1-18, January.
    8. Dong, Tao & Knoshaug, Eric P. & Pienkos, Philip T. & Laurens, Lieve M.L., 2016. "Lipid recovery from wet oleaginous microbial biomass for biofuel production: A critical review," Applied Energy, Elsevier, vol. 177(C), pages 879-895.
    9. Vasistha, S. & Khanra, A. & Clifford, M. & Rai, M.P., 2021. "Current advances in microalgae harvesting and lipid extraction processes for improved biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    10. Zhang, Yi & Kong, Xiaoying & Wang, Zhongming & Sun, Yongming & Zhu, Shunni & Li, Lianhua & Lv, Pengmei, 2018. "Optimization of enzymatic hydrolysis for effective lipid extraction from microalgae Scenedesmus sp," Renewable Energy, Elsevier, vol. 125(C), pages 1049-1057.
    11. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    12. Aziz, Md Maniruzzaman A. & Kassim, Khairul Anuar & Shokravi, Zahra & Jakarni, Fauzan Mohd & Liu, Hong Yuan & Zaini, Nabilah & Tan, Lian See & Islam, A.B.M. Saiful & Shokravi, Hoofar, 2020. "Two-stage cultivation strategy for simultaneous increases in growth rate and lipid content of microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    13. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    14. Terigar, Beatrice G. & Theegala, Chandra S., 2014. "Investigating the interdependence between cell density, biomass productivity, and lipid productivity to maximize biofuel feedstock production from outdoor microalgal cultures," Renewable Energy, Elsevier, vol. 64(C), pages 238-243.
    15. Baudry, Gino & Delrue, Florian & Legrand, Jack & Pruvost, Jérémy & Vallée, Thomas, 2017. "The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 933-947.
    16. Maity, Jyoti Prakash & Hou, Chia-Peng & Majumder, Dip & Bundschuh, Jochen & Kulp, Thomas R. & Chen, Chien-Yen & Chuang, Lu-Te & Nathan Chen, Ching-Nen & Jean, Jiin-Shuh & Yang, Tsui-Chu & Chen, Chien-, 2014. "The production of biofuel and bioelectricity associated with wastewater treatment by green algae," Energy, Elsevier, vol. 78(C), pages 94-103.
    17. Patel, Akash & Gami, Bharat & Patel, Pankaj & Patel, Beena, 2017. "Microalgae: Antiquity to era of integrated technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 535-547.
    18. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    19. Thi Dong Phuong Nguyen & Duc Huy Nguyen & Jun Wei Lim & Chih-Kai Chang & Hui Yi Leong & Thi Ngoc Thu Tran & Thi Bich Hau Vu & Thi Trung Chinh Nguyen & Pau Loke Show, 2019. "Investigation of the Relationship between Bacteria Growth and Lipid Production Cultivating of Microalgae Chlorella Vulgaris in Seafood Wastewater," Energies, MDPI, vol. 12(12), pages 1-12, June.
    20. Rocío Maceiras & Víctor Alfonsín & Luis Seguí & Juan F. González, 2021. "Microwave Assisted Alkaline Pretreatment of Algae Waste in the Production of Cellulosic Bioethanol," Energies, MDPI, vol. 14(18), pages 1-10, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:162:y:2020:i:c:p:2056-2065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.