IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v78y2015icp132-140.html
   My bibliography  Save this article

Three-float broad-band resonant line absorber with surge for wave energy conversion

Author

Listed:
  • Stansby, P.
  • Carpintero Moreno, E.
  • Stallard, T.
  • Maggi, A.

Abstract

A line absorber consisting of three cylindrical floats is shown to have high crest capture widths for wave energy conversion across a broad band of frequencies. The bow, mid and stern floats are small, medium and large respectively; the floats are spaced about half a wavelength apart so that forces and motion of adjacent floats are substantially in anti-phase. The bow and mid float are rigidly connected by a beam and a beam from the stern float is connected to a hinge above the mid float for power take off. The draft of the stern float enables heave resonance at a prominent wave frequency and the smaller draft of the mid float provides resonance at a somewhat lower frequency. Experimental results at about 1:8 scale show capture widths greater than 25% of a wavelength in regular waves and greater than 20% of a wavelength in irregular waves across a broad range of wave periods. A time-stepping model for regular waves with coefficients from linear diffraction theory showed similar power prediction with a generic drag coefficient of 1.8. The model shows the importance of surge forcing and heave resonance. The model also shows that reducing drag coefficient will increase capture width.

Suggested Citation

  • Stansby, P. & Carpintero Moreno, E. & Stallard, T. & Maggi, A., 2015. "Three-float broad-band resonant line absorber with surge for wave energy conversion," Renewable Energy, Elsevier, vol. 78(C), pages 132-140.
  • Handle: RePEc:eee:renene:v:78:y:2015:i:c:p:132-140
    DOI: 10.1016/j.renene.2014.12.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114008957
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.12.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McCabe, A.P. & Bradshaw, A. & Meadowcroft, J.A.C. & Aggidis, G., 2006. "Developments in the design of the PS Frog Mk 5 wave energy converter," Renewable Energy, Elsevier, vol. 31(2), pages 141-151.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Santo, H. & Taylor, P.H. & Stansby, P.K., 2020. "The performance of the three-float M4 wave energy converter off Albany, on the south coast of western Australia, compared to Orkney (EMEC) in the U.K," Renewable Energy, Elsevier, vol. 146(C), pages 444-459.
    2. Liu, Changhai & Hu, Min & Gao, Wenzhi & Chen, Jian & Zeng, Yishan & Wei, Daozhu & Yang, Qingjun & Bao, Gang, 2021. "A high-precise model for the hydraulic power take-off of a raft-type wave energy converter," Energy, Elsevier, vol. 215(PA).
    3. Gu, Hanbin & Stansby, Peter & Zhang, Zhaode & Zhu, Gancheng & Lin, Pengzhi & Shi, Huabin, 2023. "Research and concept design of wave energy converter on ocean squid jigging ship," Energy, Elsevier, vol. 285(C).
    4. He, Guanghua & Luan, Zhengxiao & Zhang, Wei & He, Runhua & Liu, Chaogang & Yang, Kaibo & Yang, Changhao & Jing, Penglin & Zhang, Zhigang, 2023. "Review on research approaches for multi-point absorber wave energy converters," Renewable Energy, Elsevier, vol. 218(C).
    5. Carpintero Moreno, Efrain & Stansby, Peter, 2019. "The 6-float wave energy converter M4: Ocean basin tests giving capture width, response and energy yield for several sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 307-318.
    6. Ma, Yong & Zhang, Aiming & Yang, Lele & Li, Hao & Zhai, Zhenfeng & Zhou, Heng, 2020. "Motion simulation and performance analysis of two-body floating point absorber wave energy converter," Renewable Energy, Elsevier, vol. 157(C), pages 353-367.
    7. Kara, Fuat, 2016. "Time domain prediction of power absorption from ocean waves with wave energy converter arrays," Renewable Energy, Elsevier, vol. 92(C), pages 30-46.
    8. Galván-Pozos, D.E. & Ocampo-Torres, F.J., 2020. "Dynamic analysis of a six-degree of freedom wave energy converter based on the concept of the Stewart-Gough platform," Renewable Energy, Elsevier, vol. 146(C), pages 1051-1061.
    9. Brito, Moisés & Ferreira, Rui M.L. & Teixeira, Luis & Neves, Maria G. & Canelas, Ricardo B., 2020. "Experimental investigation on the power capture of an oscillating wave surge converter in unidirectional waves," Renewable Energy, Elsevier, vol. 151(C), pages 975-992.
    10. Santo, H. & Taylor, P.H. & Eatock Taylor, R. & Stansby, P., 2016. "Decadal variability of wave power production in the North-East Atlantic and North Sea for the M4 machine," Renewable Energy, Elsevier, vol. 91(C), pages 442-450.
    11. Orszaghova, J. & Lemoine, S. & Santo, H. & Taylor, P.H. & Kurniawan, A. & McGrath, N. & Zhao, W. & Cuttler, M.V.W., 2022. "Variability of wave power production of the M4 machine at two energetic open ocean locations: Off Albany, Western Australia and at EMEC, Orkney, UK," Renewable Energy, Elsevier, vol. 197(C), pages 417-431.
    12. Fernando Jaramillo-Lopez & Brian Flannery & Jimmy Murphy & John V. Ringwood, 2020. "Modelling of a Three-Body Hinge-Barge Wave Energy Device Using System Identification Techniques," Energies, MDPI, vol. 13(19), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Josh Davidson & John V. Ringwood, 2017. "Mathematical Modelling of Mooring Systems for Wave Energy Converters—A Review," Energies, MDPI, vol. 10(5), pages 1-46, May.
    2. Cai, Qinlin & Zhu, Songye, 2021. "Applying double-mass pendulum oscillator with tunable ultra-low frequency in wave energy converters," Applied Energy, Elsevier, vol. 298(C).
    3. Ozkop, Emre & Altas, Ismail H., 2017. "Control, power and electrical components in wave energy conversion systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 106-115.
    4. Bonovas, Markos I. & Anagnostopoulos, Ioannis S., 2020. "Modelling of operation and optimum design of a wave power take-off system with energy storage," Renewable Energy, Elsevier, vol. 147(P1), pages 502-514.
    5. Falcão, António F. de O., 2010. "Wave energy utilization: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 899-918, April.
    6. Filianoti, Pasquale & Camporeale, Sergio M., 2008. "A linearized model for estimating the performance of submerged resonant wave energy converters," Renewable Energy, Elsevier, vol. 33(4), pages 631-641.
    7. Zhang, H. & Aggidis, G.A., 2018. "Nature rules hidden in the biomimetic wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 28-37.
    8. Laura Castro-Santos & Ana Rute Bento & Carlos Guedes Soares, 2020. "The Economic Feasibility of Floating Offshore Wave Energy Farms in the North of Spain," Energies, MDPI, vol. 13(4), pages 1-19, February.
    9. Doyle, Simeon & Aggidis, George A., 2019. "Development of multi-oscillating water columns as wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 75-86.
    10. Alamian, Rezvan & Shafaghat, Rouzbeh & Miri, S. Jalal & Yazdanshenas, Nima & Shakeri, Mostafa, 2014. "Evaluation of technologies for harvesting wave energy in Caspian Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 468-476.
    11. Li, Ye & Yu, Yi-Hsiang, 2012. "A synthesis of numerical methods for modeling wave energy converter-point absorbers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4352-4364.
    12. Laura Castro-Santos & Dina Silva & A. Rute Bento & Nadia Salvação & C. Guedes Soares, 2018. "Economic Feasibility of Wave Energy Farms in Portugal," Energies, MDPI, vol. 11(11), pages 1-16, November.
    13. Kushal A. Prasad & Aneesh A. Chand & Nallapaneni Manoj Kumar & Sumesh Narayan & Kabir A. Mamun, 2022. "A Critical Review of Power Take-Off Wave Energy Technology Leading to the Conceptual Design of a Novel Wave-Plus-Photon Energy Harvester for Island/Coastal Communities’ Energy Needs," Sustainability, MDPI, vol. 14(4), pages 1-55, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:78:y:2015:i:c:p:132-140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.