IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v197y2022icp417-431.html
   My bibliography  Save this article

Variability of wave power production of the M4 machine at two energetic open ocean locations: Off Albany, Western Australia and at EMEC, Orkney, UK

Author

Listed:
  • Orszaghova, J.
  • Lemoine, S.
  • Santo, H.
  • Taylor, P.H.
  • Kurniawan, A.
  • McGrath, N.
  • Zhao, W.
  • Cuttler, M.V.W.

Abstract

Since intermittent and highly variable power supply is undesirable, quantifying power yield fluctuations of wave energy converters (WECs) aids with assessment of potential deployment sites. This paper presents analysis of 3-hourly, monthly, seasonal, and inter-annual variability of power output of the M4 WEC. We compare expected performance from deployment at two wave energy hotspots: off Albany on the south-western coast of Australia and off the European Marine Energy Centre (EMEC) at Orkney, UK. We use multi-decadal wave hindcast data to predict the power that would have been generated by M4 WEC machines. The M4 machine, as a floating articulated device which extracts energy from flexing motion about a hinge, is sized according to a characteristic wavelength of the local wave climate. Using probability distributions, production duration curves, and coefficients of variation we demonstrate larger variability of the 3-hourly power yield at Orkney compared to Albany. At longer timescales, seasonal trends are highlighted through average monthly power values. From a continuity of supply perspective, we investigate occurrences of low production at three different threshold levels and calculate duration and likelihood of such events. Orkney is found to suffer from more persistent lows, causing a more intermittent power output. We also consider the effect of machine size on its power performance. Smaller machines are found to more effectively smooth out the stochastic nature of the underlying wave resource.

Suggested Citation

  • Orszaghova, J. & Lemoine, S. & Santo, H. & Taylor, P.H. & Kurniawan, A. & McGrath, N. & Zhao, W. & Cuttler, M.V.W., 2022. "Variability of wave power production of the M4 machine at two energetic open ocean locations: Off Albany, Western Australia and at EMEC, Orkney, UK," Renewable Energy, Elsevier, vol. 197(C), pages 417-431.
  • Handle: RePEc:eee:renene:v:197:y:2022:i:c:p:417-431
    DOI: 10.1016/j.renene.2022.07.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122010485
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.07.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hughes, Michael G. & Heap, Andrew D., 2010. "National-scale wave energy resource assessment for Australia," Renewable Energy, Elsevier, vol. 35(8), pages 1783-1791.
    2. Neill, Simon P. & Lewis, Matt J. & Hashemi, M. Reza & Slater, Emma & Lawrence, John & Spall, Steven A., 2014. "Inter-annual and inter-seasonal variability of the Orkney wave power resource," Applied Energy, Elsevier, vol. 132(C), pages 339-348.
    3. Stansby, P. & Carpintero Moreno, E. & Stallard, T. & Maggi, A., 2015. "Three-float broad-band resonant line absorber with surge for wave energy conversion," Renewable Energy, Elsevier, vol. 78(C), pages 132-140.
    4. Neill, Simon P. & Hashemi, M. Reza, 2013. "Wave power variability over the northwest European shelf seas," Applied Energy, Elsevier, vol. 106(C), pages 31-46.
    5. Carballo, R. & Sánchez, M. & Ramos, V. & Fraguela, J.A. & Iglesias, G., 2015. "The intra-annual variability in the performance of wave energy converters: A comparative study in N Galicia (Spain)," Energy, Elsevier, vol. 82(C), pages 138-146.
    6. Santo, H. & Taylor, P.H. & Eatock Taylor, R. & Stansby, P., 2016. "Decadal variability of wave power production in the North-East Atlantic and North Sea for the M4 machine," Renewable Energy, Elsevier, vol. 91(C), pages 442-450.
    7. Lavidas, George, 2020. "Selection index for Wave Energy Deployments (SIWED): A near-deterministic index for wave energy converters," Energy, Elsevier, vol. 196(C).
    8. Reguero, B.G. & Losada, I.J. & Méndez, F.J., 2015. "A global wave power resource and its seasonal, interannual and long-term variability," Applied Energy, Elsevier, vol. 148(C), pages 366-380.
    9. Portilla, Jesus & Sosa, Jeison & Cavaleri, Luigi, 2013. "Wave energy resources: Wave climate and exploitation," Renewable Energy, Elsevier, vol. 57(C), pages 594-605.
    10. Fairley, Iain & Lewis, Matthew & Robertson, Bryson & Hemer, Mark & Masters, Ian & Horrillo-Caraballo, Jose & Karunarathna, Harshinie & Reeve, Dominic E., 2020. "A classification system for global wave energy resources based on multivariate clustering," Applied Energy, Elsevier, vol. 262(C).
    11. Katzenstein, Warren & Fertig, Emily & Apt, Jay, 2010. "The variability of interconnected wind plants," Energy Policy, Elsevier, vol. 38(8), pages 4400-4410, August.
    12. Cannon, D.J. & Brayshaw, D.J. & Methven, J. & Coker, P.J. & Lenaghan, D., 2015. "Using reanalysis data to quantify extreme wind power generation statistics: A 33 year case study in Great Britain," Renewable Energy, Elsevier, vol. 75(C), pages 767-778.
    13. Arinaga, Randi A. & Cheung, Kwok Fai, 2012. "Atlas of global wave energy from 10 years of reanalysis and hindcast data," Renewable Energy, Elsevier, vol. 39(1), pages 49-64.
    14. Hemer, Mark A. & Zieger, Stefan & Durrant, Tom & O'Grady, Julian & Hoeke, Ron K. & McInnes, Kathleen L. & Rosebrock, Uwe, 2017. "A revised assessment of Australia's national wave energy resource," Renewable Energy, Elsevier, vol. 114(PA), pages 85-107.
    15. Morim, Joao & Cartwright, Nick & Hemer, Mark & Etemad-Shahidi, Amir & Strauss, Darrell, 2019. "Inter- and intra-annual variability of potential power production from wave energy converters," Energy, Elsevier, vol. 169(C), pages 1224-1241.
    16. Santo, H. & Taylor, P.H. & Stansby, P.K., 2020. "The performance of the three-float M4 wave energy converter off Albany, on the south coast of western Australia, compared to Orkney (EMEC) in the U.K," Renewable Energy, Elsevier, vol. 146(C), pages 444-459.
    17. Ulazia, Alain & Penalba, Markel & Ibarra-Berastegui, Gabriel & Ringwood, John & Sáenz, Jon, 2019. "Reduction of the capture width of wave energy converters due to long-term seasonal wave energy trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    18. Coe, Ryan G. & Ahn, Seongho & Neary, Vincent S. & Kobos, Peter H. & Bacelli, Giorgio, 2021. "Maybe less is more: Considering capacity factor, saturation, variability, and filtering effects of wave energy devices," Applied Energy, Elsevier, vol. 291(C).
    19. Cuttler, Michael V.W. & Hansen, Jeff E. & Lowe, Ryan J., 2020. "Seasonal and interannual variability of the wave climate at a wave energy hotspot off the southwestern coast of Australia," Renewable Energy, Elsevier, vol. 146(C), pages 2337-2350.
    20. Alain Ulazia & Markel Penalba & Arkaitz Rabanal & Gabriel Ibarra-Berastegi & John Ringwood & Jon Sáenz, 2018. "Historical Evolution of the Wave Resource and Energy Production off the Chilean Coast over the 20th Century," Energies, MDPI, vol. 11(9), pages 1-23, August.
    21. Gunn, Kester & Stock-Williams, Clym, 2012. "Quantifying the global wave power resource," Renewable Energy, Elsevier, vol. 44(C), pages 296-304.
    22. Kamranzad, Bahareh & Hadadpour, Sanaz, 2020. "A multi-criteria approach for selection of wave energy converter/location," Energy, Elsevier, vol. 204(C).
    23. Ohlendorf, Nils & Schill, Wolf-Peter, 2020. "Frequency and duration of low-wind-power events in Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 15(8).
    24. Penalba, Markel & Ulazia, Alain & Ibarra-Berastegui, Gabriel & Ringwood, John & Sáenz, Jon, 2018. "Wave energy resource variation off the west coast of Ireland and its impact on realistic wave energy converters’ power absorption," Applied Energy, Elsevier, vol. 224(C), pages 205-219.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choupin, O. & Têtu, A. & Del Río-Gamero, B. & Ferri, F. & Kofoed, JP., 2022. "Premises for an annual energy production and capacity factor improvement towards a few optimised wave energy converters configurations and resources pairs," Applied Energy, Elsevier, vol. 312(C).
    2. Coe, Ryan G. & Ahn, Seongho & Neary, Vincent S. & Kobos, Peter H. & Bacelli, Giorgio, 2021. "Maybe less is more: Considering capacity factor, saturation, variability, and filtering effects of wave energy devices," Applied Energy, Elsevier, vol. 291(C).
    3. Martinez, A. & Iglesias, G., 2020. "Wave exploitability index and wave resource classification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Choupin, Ophelie & Del Río-Gamero, B. & Schallenberg-Rodríguez, Julieta & Yánez-Rosales, Pablo, 2022. "Integration of assessment-methods for wave renewable energy: Resource and installation feasibility," Renewable Energy, Elsevier, vol. 185(C), pages 455-482.
    5. Choupin, O. & Pinheiro Andutta, F. & Etemad-Shahidi, A. & Tomlinson, R., 2021. "A decision-making process for wave energy converter and location pairing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    6. Fairley, Iain & Lewis, Matthew & Robertson, Bryson & Hemer, Mark & Masters, Ian & Horrillo-Caraballo, Jose & Karunarathna, Harshinie & Reeve, Dominic E., 2020. "A classification system for global wave energy resources based on multivariate clustering," Applied Energy, Elsevier, vol. 262(C).
    7. Morim, Joao & Cartwright, Nick & Hemer, Mark & Etemad-Shahidi, Amir & Strauss, Darrell, 2019. "Inter- and intra-annual variability of potential power production from wave energy converters," Energy, Elsevier, vol. 169(C), pages 1224-1241.
    8. Yang, Zhaoqing & García Medina, Gabriel & Neary, Vincent S. & Ahn, Seongho & Kilcher, Levi & Bharath, Aidan, 2023. "Multi-decade high-resolution regional hindcasts for wave energy resource characterization in U.S. coastal waters," Renewable Energy, Elsevier, vol. 212(C), pages 803-817.
    9. Guillou, Nicolas & Chapalain, Georges, 2020. "Assessment of wave power variability and exploitation with a long-term hindcast database," Renewable Energy, Elsevier, vol. 154(C), pages 1272-1282.
    10. Kamranzad, Bahareh & Etemad-Shahidi, Amir & Chegini, Vahid, 2016. "Sustainability of wave energy resources in southern Caspian Sea," Energy, Elsevier, vol. 97(C), pages 549-559.
    11. Guillou, Nicolas, 2020. "Estimating wave energy flux from significant wave height and peak period," Renewable Energy, Elsevier, vol. 155(C), pages 1383-1393.
    12. Gonçalves, Marta & Martinho, Paulo & Guedes Soares, C., 2018. "A 33-year hindcast on wave energy assessment in the western French coast," Energy, Elsevier, vol. 165(PB), pages 790-801.
    13. Penalba, Markel & Ulazia, Alain & Saénz, Jon & Ringwood, John V., 2020. "Impact of long-term resource variations on wave energy Farms: The Icelandic case," Energy, Elsevier, vol. 192(C).
    14. Sierra, Joan Pau & White, Adam & Mösso, Cesar & Mestres, Marc, 2017. "Assessment of the intra-annual and inter-annual variability of the wave energy resource in the Bay of Biscay (France)," Energy, Elsevier, vol. 141(C), pages 853-868.
    15. Liliana Rusu & Eugen Rusu, 2021. "Evaluation of the Worldwide Wave Energy Distribution Based on ERA5 Data and Altimeter Measurements," Energies, MDPI, vol. 14(2), pages 1-16, January.
    16. Sun, Peidong & Xu, Bin & Wang, Jichao, 2022. "Long-term trend analysis and wave energy assessment based on ERA5 wave reanalysis along the Chinese coastline," Applied Energy, Elsevier, vol. 324(C).
    17. Alonso, Rodrigo & Solari, Sebastián & Teixeira, Luis, 2015. "Wave energy resource assessment in Uruguay," Energy, Elsevier, vol. 93(P1), pages 683-696.
    18. Pourali, Mahmoud & Kavianpour, Mohamad Reza & Kamranzad, Bahareh & Alizadeh, Mohamad Javad, 2023. "Future variability of wave energy in the Gulf of Oman using a high resolution CMIP6 climate model," Energy, Elsevier, vol. 262(PB).
    19. Seongho Ahn & Kevin A. Haas & Vincent S. Neary, 2020. "Dominant Wave Energy Systems and Conditional Wave Resource Characterization for Coastal Waters of the United States," Energies, MDPI, vol. 13(12), pages 1-26, June.
    20. Santo, H. & Taylor, P.H. & Eatock Taylor, R. & Stansby, P., 2016. "Decadal variability of wave power production in the North-East Atlantic and North Sea for the M4 machine," Renewable Energy, Elsevier, vol. 91(C), pages 442-450.

    More about this item

    Keywords

    Wave energy; M4 wave energy converter; Power production; Variability; Intermittency; Hindcast wave data;
    All these keywords.

    JEL classification:

    • M4 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Accounting

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:197:y:2022:i:c:p:417-431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.