IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v76y2015icp484-493.html
   My bibliography  Save this article

Influence of the rotation speed on the effectiveness parameters of a desiccant wheel: An assessment using experimental data and manufacturer software

Author

Listed:
  • Ruivo, Celestino R.
  • Angrisani, Giovanni
  • Minichiello, Francesco

Abstract

The effectiveness parameters of desiccant wheels depend on the variable operating conditions. Experimental data measured in an air handling unit equipped with a desiccant wheel and data provided by the manufacturer software are used in the present work to investigate the dependence of effectiveness parameters on the rotation speed. The air handling unit belongs to a test facility with a microcogeneration system. The regeneration airflow is heated up to moderate temperatures in the range 45–70 °C by using thermal energy produced by the microcogenerator and/or a boiler. The analysis of the results shows that i) the manufacturer software tends to underestimate the increase of process air temperature and to overestimate the dehumidification capability of the desiccant rotor compared to experimental data; and ii) the various investigated effectiveness parameters present different dependences on the rotation speed: monotonic dependence, a maximum value for an intermediate rotation speed, and a negligible dependence.

Suggested Citation

  • Ruivo, Celestino R. & Angrisani, Giovanni & Minichiello, Francesco, 2015. "Influence of the rotation speed on the effectiveness parameters of a desiccant wheel: An assessment using experimental data and manufacturer software," Renewable Energy, Elsevier, vol. 76(C), pages 484-493.
  • Handle: RePEc:eee:renene:v:76:y:2015:i:c:p:484-493
    DOI: 10.1016/j.renene.2014.11.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114007988
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.11.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ge, T.S. & Dai, Y.J. & Wang, R.Z. & Li, Y., 2008. "Experimental investigation on a one-rotor two-stage rotary desiccant cooling system," Energy, Elsevier, vol. 33(12), pages 1807-1815.
    2. La, D. & Li, Y. & Dai, Y.J. & Ge, T.S. & Wang, R.Z., 2012. "Development of a novel rotary desiccant cooling cycle with isothermal dehumidification and regenerative evaporative cooling using thermodynamic analysis method," Energy, Elsevier, vol. 44(1), pages 778-791.
    3. Kabeel, A.E., 2007. "Solar powered air conditioning system using rotary honeycomb desiccant wheel," Renewable Energy, Elsevier, vol. 32(11), pages 1842-1857.
    4. Zhang, L.Z., 2006. "Energy performance of independent air dehumidification systems with energy recovery measures," Energy, Elsevier, vol. 31(8), pages 1228-1242.
    5. Panaras, G. & Mathioulakis, E. & Belessiotis, V. & Kyriakis, N., 2010. "Theoretical and experimental investigation of the performance of a desiccant air-conditioning system," Renewable Energy, Elsevier, vol. 35(7), pages 1368-1375.
    6. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198, September.
    7. Angrisani, Giovanni & Roselli, Carlo & Sasso, Maurizio, 2013. "Effect of rotational speed on the performances of a desiccant wheel," Applied Energy, Elsevier, vol. 104(C), pages 268-275.
    8. Nóbrega, C.E.L. & Brum, N.C.L., 2011. "A graphical procedure for desiccant cooling cycle design," Energy, Elsevier, vol. 36(3), pages 1564-1570.
    9. Ruivo, C.R. & Costa, J.J. & Figueiredo, A.R. & Kodama, A., 2012. "Effectiveness parameters for the prediction of the global performance of desiccant wheels – An assessment based on experimental data," Renewable Energy, Elsevier, vol. 38(1), pages 181-187.
    10. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935, September.
    11. Angrisani, Giovanni & Minichiello, Francesco & Roselli, Carlo & Sasso, Maurizio, 2012. "Experimental analysis on the dehumidification and thermal performance of a desiccant wheel," Applied Energy, Elsevier, vol. 92(C), pages 563-572.
    12. Angrisani, Giovanni & Capozzoli, Alfonso & Minichiello, Francesco & Roselli, Carlo & Sasso, Maurizio, 2011. "Desiccant wheel regenerated by thermal energy from a microcogenerator: Experimental assessment of the performances," Applied Energy, Elsevier, vol. 88(4), pages 1354-1365, April.
    13. Ahmed, M.H. & Kattab, N.M. & Fouad, M., 2005. "Evaluation and optimization of solar desiccant wheel performance," Renewable Energy, Elsevier, vol. 30(3), pages 305-325.
    14. Panaras, G. & Mathioulakis, E. & Belessiotis, V., 2011. "Solid desiccant air-conditioning systems – Design parameters," Energy, Elsevier, vol. 36(5), pages 2399-2406.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeng, Cheng & Liu, Shuli & Shukla, Ashish, 2017. "A review on the air-to-air heat and mass exchanger technologies for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 753-774.
    2. Ascione, Fabrizio & D'Agostino, Diana & Marino, Concetta & Minichiello, Francesco, 2016. "Earth-to-air heat exchanger for NZEB in Mediterranean climate," Renewable Energy, Elsevier, vol. 99(C), pages 553-563.
    3. Speerforck, Arne & Schmitz, Gerhard, 2016. "Experimental investigation of a ground-coupled desiccant assisted air conditioning system," Applied Energy, Elsevier, vol. 181(C), pages 575-585.
    4. Pedro J. Martínez & Carlos Llorca & José A. Pla & Pedro Martínez, 2017. "Experimental Validation of the Simulation Model of a DOAS Equipped with a Desiccant Wheel and a Vapor Compression Refrigeration System," Energies, MDPI, vol. 10(9), pages 1-15, September.
    5. Qi Xu & Saffa Riffat & Shihao Zhang, 2019. "Review of Heat Recovery Technologies for Building Applications," Energies, MDPI, vol. 12(7), pages 1-22, April.
    6. Koichi Kawamoto & Wanghee Cho & Hitoshi Kohno & Makoto Koganei & Ryozo Ooka & Shinsuke Kato, 2016. "Field Study on Humidification Performance of a Desiccant Air-Conditioning System Combined with a Heat Pump," Energies, MDPI, vol. 9(2), pages 1-22, January.
    7. Peter Niemann & Finn Richter & Arne Speerforck & Gerhard Schmitz, 2019. "Desiccant-Assisted Air Conditioning System Relying on Solar and Geothermal Energy during Summer and Winter," Energies, MDPI, vol. 12(16), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruivo, Celestino R. & Goldsworthy, Mark & Intini, Manuel, 2014. "Interpolation methods to predict the influence of inlet airflow states on desiccant wheel performance at low regeneration temperature," Energy, Elsevier, vol. 68(C), pages 765-772.
    2. Angrisani, Giovanni & Roselli, Carlo & Sasso, Maurizio, 2013. "Effect of rotational speed on the performances of a desiccant wheel," Applied Energy, Elsevier, vol. 104(C), pages 268-275.
    3. Kang, Hyungmook & Lee, Dae-Young, 2017. "Experimental investigation and introduction of a similarity parameter for characterizing the heat and mass transfer in polymer desiccant wheels," Energy, Elsevier, vol. 120(C), pages 705-717.
    4. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2016. "Solid desiccant air conditioning – A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1451-1469.
    5. Angrisani, Giovanni & Roselli, Carlo & Sasso, Maurizio, 2015. "Experimental assessment of the energy performance of a hybrid desiccant cooling system and comparison with other air-conditioning technologies," Applied Energy, Elsevier, vol. 138(C), pages 533-545.
    6. Zouaoui, Ahlem & Zili-Ghedira, Leila & Ben Nasrallah, Sassi, 2016. "Open solid desiccant cooling air systems: A review and comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 889-917.
    7. Rambhad, Kishor S. & Walke, Pramod V. & Tidke, D.J., 2016. "Solid desiccant dehumidification and regeneration methods—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 73-83.
    8. Giovanni Angrisani & Carlo Roselli & Maurizio Sasso & Francesco Tariello & Giuseppe Peter Vanoli, 2016. "Performance Assessment of a Solar-Assisted Desiccant-Based Air Handling Unit Considering Different Scenarios," Energies, MDPI, vol. 9(9), pages 1-24, September.
    9. De Antonellis, Stefano & Joppolo, Cesare Maria & Molinaroli, Luca & Pasini, Alberto, 2012. "Simulation and energy efficiency analysis of desiccant wheel systems for drying processes," Energy, Elsevier, vol. 37(1), pages 336-345.
    10. Sphaier, L.A. & Nóbrega, C.E.L., 2012. "Parametric analysis of components effectiveness on desiccant cooling system performance," Energy, Elsevier, vol. 38(1), pages 157-166.
    11. Tu, Rang & Liu, Xiao-Hua & Jiang, Yi, 2014. "Performance analysis of a two-stage desiccant cooling system," Applied Energy, Elsevier, vol. 113(C), pages 1562-1574.
    12. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    13. Eicker, Ursula & Schneider, Dietrich & Schumacher, Jürgen & Ge, Tianshu & Dai, Yanjun, 2010. "Operational experiences with solar air collector driven desiccant cooling systems," Applied Energy, Elsevier, vol. 87(12), pages 3735-3747, December.
    14. Chiang, Yuan-Ching & Chen, Chih-Hao & Chiang, Yi-Chin & Chen, Sih-Li, 2016. "Circulating inclined fluidized beds with application for desiccant dehumidification systems," Applied Energy, Elsevier, vol. 175(C), pages 199-211.
    15. La, D. & Dai, Y.J. & Li, Y. & Tang, Z.Y. & Ge, T.S. & Wang, R.Z., 2013. "An experimental investigation on the integration of two-stage dehumidification and regenerative evaporative cooling," Applied Energy, Elsevier, vol. 102(C), pages 1218-1228.
    16. Niemann, Peter & Schmitz, Gerhard, 2020. "Air conditioning system with enthalpy recovery for space heating and air humidification: An experimental and numerical investigation," Energy, Elsevier, vol. 213(C).
    17. La, D. & Li, Y. & Dai, Y.J. & Ge, T.S. & Wang, R.Z., 2012. "Development of a novel rotary desiccant cooling cycle with isothermal dehumidification and regenerative evaporative cooling using thermodynamic analysis method," Energy, Elsevier, vol. 44(1), pages 778-791.
    18. Shuo Liu & Chang-Ho Jeong & Myoung-Souk Yeo, 2020. "Effect of Evaporator Position on Heat Pump Assisted Solid Desiccant Cooling Systems," Energies, MDPI, vol. 13(22), pages 1-21, November.
    19. Zhou, Xingchao & Goldsworthy, Mark & Sproul, Alistair, 2018. "Performance investigation of an internally cooled desiccant wheel," Applied Energy, Elsevier, vol. 224(C), pages 382-397.
    20. Tu, Rang & Liu, Xiao-Hua & Jiang, Yi, 2015. "Irreversible processes and performance improvement of desiccant wheel dehumidification and cooling systems using exergy," Applied Energy, Elsevier, vol. 145(C), pages 331-344.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:76:y:2015:i:c:p:484-493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.