IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4881-d415177.html
   My bibliography  Save this article

Compressed Machine Learning Models for the Uncertainty Quantification of Power Distribution Networks

Author

Listed:
  • Zain Anwer Memon

    (Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy)

  • Riccardo Trinchero

    (Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy)

  • Paolo Manfredi

    (Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy)

  • Flavio Canavero

    (Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy)

  • Igor S. Stievano

    (Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy)

Abstract

Today’s spread of power distribution networks, with the installation of a significant number of renewable generators that depend on environmental conditions and on users’ consumption profiles, requires sophisticated models for monitoring the power flow, regulating the electricity market, and assessing the reliability of power grids. Such models cannot avoid taking into account the variability that is inherent to the electrical system and users’ behavior. In this paper, we present a solution for the generation of a compressed surrogate model of the electrical state of a realistic power network that is subject to a large number (on the order of a few hundreds) of uncertain parameters representing the power injected by distributed renewable sources or absorbed by users with different consumption profiles. Specifically, principal component analysis is combined with two state-of-the-art surrogate modeling strategies for uncertainty quantification, namely, the least-squares support vector machine, which is a nonparametric regression belonging to the class of machine learning methods, and the widely adopted polynomial chaos expansion. Such methods allow providing compact and efficient surrogate models capable of predicting the statistical behavior of all nodal voltages within the network as functions of its stochastic parameters. The IEEE 8500-node test feeder benchmark with 450 and 900 uncertain parameters is considered as a validation example in this study. The feasibility and strength of the proposed method are verified through a systematic assessment of its performance in terms of accuracy, efficiency, and convergence, based on reference simulations obtained via classical Monte Carlo analysis.

Suggested Citation

  • Zain Anwer Memon & Riccardo Trinchero & Paolo Manfredi & Flavio Canavero & Igor S. Stievano, 2020. "Compressed Machine Learning Models for the Uncertainty Quantification of Power Distribution Networks," Energies, MDPI, vol. 13(18), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4881-:d:415177
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4881/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4881/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kyungsung An & Kyung-Bin Song & Kyeon Hur, 2017. "Incorporating Charging/Discharging Strategy of Electric Vehicles into Security-Constrained Optimal Power Flow to Support High Renewable Penetration," Energies, MDPI, vol. 10(5), pages 1-15, May.
    2. Juan A. Martinez-Velasco & Gerardo Guerra, 2016. "Reliability Analysis of Distribution Systems with Photovoltaic Generation Using a Power Flow Simulator and a Parallel Monte Carlo Approach," Energies, MDPI, vol. 9(7), pages 1-21, July.
    3. Carpinelli, Guido & Caramia, Pierluigi & Varilone, Pietro, 2015. "Multi-linear Monte Carlo simulation method for probabilistic load flow of distribution systems with wind and photovoltaic generation systems," Renewable Energy, Elsevier, vol. 76(C), pages 283-295.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali M. Hakami & Kazi N. Hasan & Mohammed Alzubaidi & Manoj Datta, 2022. "A Review of Uncertainty Modelling Techniques for Probabilistic Stability Analysis of Renewable-Rich Power Systems," Energies, MDPI, vol. 16(1), pages 1-26, December.
    2. Mohammed Alzubaidi & Kazi N. Hasan & Lasantha Meegahapola & Mir Toufikur Rahman, 2021. "Identification of Efficient Sampling Techniques for Probabilistic Voltage Stability Analysis of Renewable-Rich Power Systems," Energies, MDPI, vol. 14(8), pages 1-15, April.
    3. Enrico Vaccariello & Riccardo Trinchero & Igor S. Stievano & Pierluigi Leone, 2021. "A Statistical Assessment of Blending Hydrogen into Gas Networks," Energies, MDPI, vol. 14(16), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fitsum Salehu Kebede & Jean-Christophe Olivier & Salvy Bourguet & Mohamed Machmoum, 2021. "Reliability Evaluation of Renewable Power Systems through Distribution Network Power Outage Modelling," Energies, MDPI, vol. 14(11), pages 1-25, May.
    2. Prusty, B Rajanarayan & Jena, Debashisha, 2017. "A critical review on probabilistic load flow studies in uncertainty constrained power systems with photovoltaic generation and a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1286-1302.
    3. Segantin, Stefano & Testoni, Raffaella & Zucchetti, Massimo, 2019. "The lifetime determination of ARC reactor as a load-following plant in the energy framework," Energy Policy, Elsevier, vol. 126(C), pages 66-75.
    4. Kabir, M.N. & Mishra, Y. & Bansal, R.C., 2016. "Probabilistic load flow for distribution systems with uncertain PV generation," Applied Energy, Elsevier, vol. 163(C), pages 343-351.
    5. Cheng Lu & Yun-Wen Feng & Cheng-Wei Fei, 2019. "Weighted Regression-Based Extremum Response Surface Method for Structural Dynamic Fuzzy Reliability Analysis," Energies, MDPI, vol. 12(9), pages 1-16, April.
    6. Samet, Haidar & Khorshidsavar, Morteza, 2018. "Analytic time series load flow," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3886-3899.
    7. González-Ordiano, Jorge Ángel & Mühlpfordt, Tillmann & Braun, Eric & Liu, Jianlei & Çakmak, Hüseyin & Kühnapfel, Uwe & Düpmeier, Clemens & Waczowicz, Simon & Faulwasser, Timm & Mikut, Ralf & Hagenmeye, 2021. "Probabilistic forecasts of the distribution grid state using data-driven forecasts and probabilistic power flow," Applied Energy, Elsevier, vol. 302(C).
    8. Ioannis Skouros & Athanasios Karlis, 2020. "A Study on the V2G Technology Incorporation in a DC Nanogrid and on the Provision of Voltage Regulation to the Power Grid," Energies, MDPI, vol. 13(10), pages 1-23, May.
    9. Jun Bi & Yongxing Wang & Shuai Sun & Wei Guan, 2018. "Predicting Charging Time of Battery Electric Vehicles Based on Regression and Time-Series Methods: A Case Study of Beijing," Energies, MDPI, vol. 11(5), pages 1-18, April.
    10. Gracita Batista Rosas & Elizete Maria Lourenço & Djalma Mosqueira Falcão & Thelma Solange Piazza Fernandes, 2019. "An Expeditious Methodology to Assess the Effects of Intermittent Generation on Power Systems," Energies, MDPI, vol. 12(6), pages 1-18, March.
    11. Talari, Saber & Shafie-khah, Miadreza & Osório, Gerardo J. & Aghaei, Jamshid & Catalão, João P.S., 2018. "Stochastic modelling of renewable energy sources from operators' point-of-view: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1953-1965.
    12. Barukčić, M. & Hederić, Ž. & Hadžiselimović, M. & Seme, S., 2018. "A simple stochastic method for modelling the uncertainty of photovoltaic power production based on measured data," Energy, Elsevier, vol. 165(PB), pages 246-256.
    13. Yih-Der Lee & Jheng-Lun Jiang & Yuan-Hsiang Ho & Wei-Chen Lin & Hsin-Ching Chih & Wei-Tzer Huang, 2020. "Neutral Current Reduction in Three-Phase Four-Wire Distribution Feeders by Optimal Phase Arrangement Based on a Full-Scale Net Load Model Derived from the FTU Data," Energies, MDPI, vol. 13(7), pages 1-20, April.
    14. Velaz-Acera, Néstor & Álvarez-García, Javier & Borge-Diez, David, 2023. "Economic and emission reduction benefits of the implementation of eVTOL aircraft with bi-directional flow as storage systems in islands and case study for Canary Islands," Applied Energy, Elsevier, vol. 331(C).
    15. Victor H. Hinojosa, 2020. "Comparing Corrective and Preventive Security-Constrained DCOPF Problems Using Linear Shift-Factors," Energies, MDPI, vol. 13(3), pages 1-16, January.
    16. Umar Fitra Ramadhan & Jaewan Suh & Sungchul Hwang & Jaehyeong Lee & Minhan Yoon, 2022. "A Comprehensive Study of HVDC Link with Reserve Operation Control in a Multi-Infeed Direct Current Power System," Sustainability, MDPI, vol. 14(10), pages 1-27, May.
    17. Miroslaw Parol & Jacek Wasilewski & Tomasz Wojtowicz & Bartlomiej Arendarski & Przemyslaw Komarnicki, 2022. "Reliability Analysis of MV Electric Distribution Networks Including Distributed Generation and ICT Infrastructure," Energies, MDPI, vol. 15(14), pages 1-34, July.
    18. Van Ky Huynh & Van Duong Ngo & Dinh Duong Le & Nhi Thi Ai Nguyen, 2018. "Probabilistic Power Flow Methodology for Large-Scale Power Systems Incorporating Renewable Energy Sources," Energies, MDPI, vol. 11(10), pages 1-12, October.
    19. Prusty, B. Rajanarayan & Jena, Debashisha, 2018. "An over-limit risk assessment of PV integrated power system using probabilistic load flow based on multi-time instant uncertainty modeling," Renewable Energy, Elsevier, vol. 116(PA), pages 367-383.
    20. Neofytos Neofytou & Konstantinos Blazakis & Yiannis Katsigiannis & Georgios Stavrakakis, 2019. "Modeling Vehicles to Grid as a Source of Distributed Frequency Regulation in Isolated Grids with Significant RES Penetration," Energies, MDPI, vol. 12(4), pages 1-23, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4881-:d:415177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.