Pyrolysis of biomass – fuzzy modeling
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2014.01.014
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Andre Faaij, 2006. "Modern Biomass Conversion Technologies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(2), pages 335-367, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Vladimir Bukhtoyarov & Vadim Tynchenko & Kirill Bashmur & Oleg Kolenchukov & Vladislav Kukartsev & Ivan Malashin, 2024. "Fuzzy Neural Network Applications in Biomass Gasification and Pyrolysis for Biofuel Production: A Review," Energies, MDPI, vol. 18(1), pages 1-25, December.
- Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
- Kasmuri, N.H. & Kamarudin, S.K. & Abdullah, S.R.S. & Hasan, H.A. & Som, A.Md., 2017. "Process system engineering aspect of bio-alcohol fuel production from biomass via pyrolysis: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 914-923.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
- Ji, Li-Qun & Zhang, Chuang & Fang, Jing-Qi, 2017. "Economic analysis of converting of waste agricultural biomass into liquid fuel: A case study on a biofuel plant in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 224-229.
- Paiano, Annarita & Lagioia, Giovanni, 2016. "Energy potential from residual biomass towards meeting the EU renewable energy and climate targets. The Italian case," Energy Policy, Elsevier, vol. 91(C), pages 161-173.
- Motasemi, F. & Afzal, Muhammad T., 2013. "A review on the microwave-assisted pyrolysis technique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 317-330.
- Jonker, J.G.G. & Faaij, A.P.C., 2013. "Techno-economic assessment of micro-algae as feedstock for renewable bio-energy production," Applied Energy, Elsevier, vol. 102(C), pages 461-475.
- Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Kindermann, Georg & Schmid, Erwin, 2010. "Cost-effective CO2 emission reduction through heat, power and biofuel production from woody biomass: A spatially explicit comparison of conversion technologies," Applied Energy, Elsevier, vol. 87(7), pages 2128-2141, July.
- Hend Dakhel Alhassany & Safaa Malik Abbas & Marcos Tostado-Véliz & David Vera & Salah Kamel & Francisco Jurado, 2022. "Review of Bioenergy Potential from the Agriculture Sector in Iraq," Energies, MDPI, vol. 15(7), pages 1-17, April.
- Yahyaee, R. & Ghobadian, B. & Najafi, G., 2013. "Waste fish oil biodiesel as a source of renewable fuel in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 312-319.
- Åhman, Max, 2010. "Biomethane in the transport sector--An appraisal of the forgotten option," Energy Policy, Elsevier, vol. 38(1), pages 208-217, January.
- Paiano, A. & Camaggio, G. & Lagioia, G., 2011. "Territorial level for biofuel production--Case study of an Italian region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2222-2231, June.
- Gojiya, Anil & Deb, Dipankar & Iyer, Kannan K.R., 2019. "Feasibility study of power generation from agricultural residue in comparison with soil incorporation of residue," Renewable Energy, Elsevier, vol. 134(C), pages 416-425.
- W. A. M. A. N. Illankoon & Chiara Milanese & Alessandro Girella & Puhulwella G. Rathnasiri & K. H. M. Sudesh & Maria Medina Llamas & Maria Cristina Collivignarelli & Sabrina Sorlini, 2022. "Agricultural Biomass-Based Power Generation Potential in Sri Lanka: A Techno-Economic Analysis," Energies, MDPI, vol. 15(23), pages 1-18, November.
- Bocci, E. & Di Carlo, A. & Marcelo, D., 2009. "Power plant perspectives for sugarcane mills," Energy, Elsevier, vol. 34(5), pages 689-698.
- Bram, S. & De Ruyck, J. & Lavric, D., 2009. "Using biomass: A system perturbation analysis," Applied Energy, Elsevier, vol. 86(2), pages 194-201, February.
- Wajahat Ullah Khan Tareen & Muhammad Tariq Dilbar & Muhammad Farhan & Muhammad Ali Nawaz & Ali Waqar Durrani & Kamran Ali Memon & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan & Muhammad Amir & Mu, 2019. "Present Status and Potential of Biomass Energy in Pakistan Based on Existing and Future Renewable Resources," Sustainability, MDPI, vol. 12(1), pages 1-40, December.
- Talens Peiró, L. & Villalba Méndez, G. & Sciubba, E. & Gabarrell i Durany, X., 2010. "Extended exergy accounting applied to biodiesel production," Energy, Elsevier, vol. 35(7), pages 2861-2869.
- Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Schmid, Erwin, 2011. "Cost-effective policy instruments for greenhouse gas emission reduction and fossil fuel substitution through bioenergy production in Austria," Energy Policy, Elsevier, vol. 39(6), pages 3261-3280, June.
- Aneta Bełdycka-Bórawska & Piotr Bórawski & Michał Borychowski & Rafał Wyszomierski & Marek Bartłomiej Bórawski & Tomasz Rokicki & Luiza Ochnio & Krzysztof Jankowski & Bartosz Mickiewicz & James W. Dun, 2021. "Development of Solid Biomass Production in Poland, Especially Pellet, in the Context of the World’s and the European Union’s Climate and Energy Policies," Energies, MDPI, vol. 14(12), pages 1-22, June.
- Kostas, Emily T. & Beneroso, Daniel & Robinson, John P., 2017. "The application of microwave heating in bioenergy: A review on the microwave pre-treatment and upgrading technologies for biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 12-27.
- Nisar, Arsalan & Monroy, Carlos Rodríguez, 2012. "Potential of the renewable energy development in Jammu and Kashmir, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5260-5267.
More about this item
Keywords
Pyrolysis reaction; Fuzzy logic; ANFIS; Reed Canary grass; Pyrolysis model; Wood;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:66:y:2014:i:c:p:747-758. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.