IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v47y2012icp147-151.html
   My bibliography  Save this article

Optimization of biogas production from waste activated sludge through serial digestion

Author

Listed:
  • Athanasoulia, E.
  • Melidis, P.
  • Aivasidis, A.

Abstract

The treatment and disposal of excess sludge represents a problem of growing importance of wastewater treatment plants all over the world. Anaerobic digestion is the most common method for sludge stabilization resulting in biogas production at the same time. In the present study, in pilot-scale experiments, process performance and biogas production of a cascade of two methanogenic continuously stirred tank reactors (CSTR) connected in series, was compared to a conventional one-step CSTR reactor treating sewage sludge. Retention times between 12.3 and 19.7 days were examined for both systems. Results showed that the serial configuration could improve biogas production by 9.5–40.1%. Biogas selectivity estimated 0.49 ± 0.06 m3biogas/kg TVSdegraded for the cascade and 0.44 ± 0.02 m3biogas/kg TVSdegraded for the one-step process. Both systems contained low VFA concentrations in the effluent. In terms of volatile suspended solids reduction, values ranged between 31.5% and 33.8% for the one-step process and between 36.2% and 40.7% for the cascade. The study thus suggests that the process performance and biogas production from sewage sludge can be optimized through serial digestion.

Suggested Citation

  • Athanasoulia, E. & Melidis, P. & Aivasidis, A., 2012. "Optimization of biogas production from waste activated sludge through serial digestion," Renewable Energy, Elsevier, vol. 47(C), pages 147-151.
  • Handle: RePEc:eee:renene:v:47:y:2012:i:c:p:147-151
    DOI: 10.1016/j.renene.2012.04.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112002790
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.04.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Zhenwei & Hsueh, Michael K. & He, Qiang, 2011. "Enhancing biomethanation of municipal waste sludge with grease trap waste as a co-substrate," Renewable Energy, Elsevier, vol. 36(6), pages 1802-1807.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Athanasoulia, E. & Melidis, P. & Aivasidis, A., 2014. "Co-digestion of sewage sludge and crude glycerol from biodiesel production," Renewable Energy, Elsevier, vol. 62(C), pages 73-78.
    2. Khayum, Naseem & Anbarasu, S. & Murugan, S., 2018. "Biogas potential from spent tea waste: A laboratory scale investigation of co-digestion with cow manure," Energy, Elsevier, vol. 165(PB), pages 760-768.
    3. Maghanaki, M. Mohammadi & Ghobadian, B. & Najafi, G. & Galogah, R. Janzadeh, 2013. "Potential of biogas production in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 702-714.
    4. Li, YuQian & Liu, ChunMei & Wachemo, Akiber Chufo & Li, XiuJin, 2018. "Effects of liquid fraction of digestate recirculation on system performance and microbial community structure during serial anaerobic digestion of completely stirred tank reactors for corn stover," Energy, Elsevier, vol. 160(C), pages 309-317.
    5. Di Maria, Francesco & Micale, Caterina & Sordi, Alessio, 2014. "Electrical energy production from the integrated aerobic-anaerobic treatment of organic waste by ORC," Renewable Energy, Elsevier, vol. 66(C), pages 461-467.
    6. Afazeli, Hadi & Jafari, Ali & Rafiee, Shahin & Nosrati, Mohsen, 2014. "An investigation of biogas production potential from livestock and slaughterhouse wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 380-386.
    7. Andreas Walter & Maria Hanser & Christian Ebner & Heribert Insam & Rudolf Markt & Sebastian Hupfauf & Maraike Probst, 2022. "Stability of the Anaerobic Digestion Process during Switch from Parallel to Serial Operation—A Microbiome Study," Sustainability, MDPI, vol. 14(12), pages 1-14, June.
    8. Derick Lima & Gregory Appleby & Li Li, 2023. "A Scoping Review of Options for Increasing Biogas Production from Sewage Sludge: Challenges and Opportunities for Enhancing Energy Self-Sufficiency in Wastewater Treatment Plants," Energies, MDPI, vol. 16(5), pages 1-34, March.
    9. Bidart, Christian & Fröhling, Magnus & Schultmann, Frank, 2014. "Electricity and substitute natural gas generation from the conversion of wastewater treatment plant sludge," Applied Energy, Elsevier, vol. 113(C), pages 404-413.
    10. Zhang, Wanqin & Wei, Quanyuan & Wu, Shubiao & Qi, Dandan & Li, Wei & Zuo, Zhuang & Dong, Renjie, 2014. "Batch anaerobic co-digestion of pig manure with dewatered sewage sludge under mesophilic conditions," Applied Energy, Elsevier, vol. 128(C), pages 175-183.
    11. Di Maria, Francesco & Micale, Caterina, 2015. "The contribution to energy production of the aerobic bioconversion of organic waste by an organic Rankine cycle in an integrated anaerobic–aerobic facility," Renewable Energy, Elsevier, vol. 81(C), pages 770-778.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xiao & Gao, Xingbao & Wang, Wei & Zheng, Lei & Zhou, Yingjun & Sun, Yifei, 2012. "Pilot-scale anaerobic co-digestion of municipal biomass waste: Focusing on biogas production and GHG reduction," Renewable Energy, Elsevier, vol. 44(C), pages 463-468.
    2. Diamantis, Vasileios & Eftaxias, Alexandros & Stamatelatou, Katerina & Noutsopoulos, Constantinos & Vlachokostas, Christos & Aivasidis, Alexandros, 2021. "Bioenergy in the era of circular economy: Anaerobic digestion technological solutions to produce biogas from lipid-rich wastes," Renewable Energy, Elsevier, vol. 168(C), pages 438-447.
    3. Zhang, Pengchong & Lin, Che-Jen & Liu, James & Pongprueksa, Pruek & Evers, Simon A. & Hart, Peter, 2014. "Biogas production from brown grease using a pilot-scale high-rate anaerobic digester," Renewable Energy, Elsevier, vol. 68(C), pages 304-313.
    4. Hamawand, Ihsan, 2015. "Anaerobic digestion process and bio-energy in meat industry: A review and a potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 37-51.
    5. Lopez, Ryan J. & Higgins, Scott R. & Pagaling, Eulyn & Yan, Tao & Cooney, Michael J., 2014. "High rate anaerobic digestion of wastewater separated from grease trap waste," Renewable Energy, Elsevier, vol. 62(C), pages 234-242.
    6. Shakourifar, Niloofar & Krisa, David & Eskicioglu, Cigdem, 2020. "Anaerobic co-digestion of municipal waste sludge with grease trap waste mixture: Point of process failure determination," Renewable Energy, Elsevier, vol. 154(C), pages 117-127.
    7. Zhang, Wanqin & Wei, Quanyuan & Wu, Shubiao & Qi, Dandan & Li, Wei & Zuo, Zhuang & Dong, Renjie, 2014. "Batch anaerobic co-digestion of pig manure with dewatered sewage sludge under mesophilic conditions," Applied Energy, Elsevier, vol. 128(C), pages 175-183.
    8. Rasit, Nazaitulshila & Idris, Azni & Harun, Razif & Wan Ab Karim Ghani, Wan Azlina, 2015. "Effects of lipid inhibition on biogas production of anaerobic digestion from oily effluents and sludges: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 351-358.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:47:y:2012:i:c:p:147-151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.