IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v65y2014icp41-48.html
   My bibliography  Save this article

Influence of reaction conditions on bio-oil production from pyrolysis of construction waste wood

Author

Listed:
  • Kim, Jeong Wook
  • Lee, Hyung Won
  • Lee, In-Gu
  • Jeon, Jong-Ki
  • Ryu, Changkook
  • Park, Sung Hoon
  • Jung, Sang-Chul
  • Park, Young-Kwon

Abstract

The pyrolysis characteristics of construction waste wood were investigated for conversion into renewable liquid fuels. The activation energy of pyrolysis derived from thermogravimetric analysis increased gradually with temperature, from 149.41 kJ/mol to 590.22 kJ/mol, as the decomposition of cellulose and hemicellulose was completed and only lignin remained to be decomposed slowly. The yield and properties of pyrolysis oil were studied using two types of reactors, a batch reactor and a fluidized-bed reactor, for a temperature range of 400–550 °C. While both reactors revealed the maximum oil yield at 500 °C, the fluidized-bed reactor consistently gave larger and less temperature-dependent oil yields than the batch reactor. This type of reactor also reduced the moisture content of the oil and improved the oil quality by minimizing the secondary condensation and dehydration. The oil from the fluidized-bed reactor resulted in a larger phenolic content than from the batch reactor, indicating more effective decomposition of lignin. The catalytic pyrolysis over HZSM-5 in the batch reactor increased the proportion of light phenolics and aromatics, which was helpful in upgrading the oil quality.

Suggested Citation

  • Kim, Jeong Wook & Lee, Hyung Won & Lee, In-Gu & Jeon, Jong-Ki & Ryu, Changkook & Park, Sung Hoon & Jung, Sang-Chul & Park, Young-Kwon, 2014. "Influence of reaction conditions on bio-oil production from pyrolysis of construction waste wood," Renewable Energy, Elsevier, vol. 65(C), pages 41-48.
  • Handle: RePEc:eee:renene:v:65:y:2014:i:c:p:41-48
    DOI: 10.1016/j.renene.2013.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113003546
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Choi, Suek Joo & Park, Sung Hoon & Jeon, Jong-Ki & Lee, In Gu & Ryu, Changkook & Suh, Dong Jin & Park, Young-Kwon, 2013. "Catalytic conversion of particle board over microporous catalysts," Renewable Energy, Elsevier, vol. 54(C), pages 105-110.
    2. Akhtar, Javaid & Saidina Amin, NorAishah, 2012. "A review on operating parameters for optimum liquid oil yield in biomass pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5101-5109.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shiwang Yu & Na Guo & Caimiao Zheng & Yu Song & Jianli Hao, 2021. "Investigating the Association between Outdoor Environment and Outdoor Activities for Seniors Living in Old Residential Communities," IJERPH, MDPI, vol. 18(14), pages 1-16, July.
    2. Ahmed, Gaffer & Kishore, Nanda, 2023. "Fuel phase extraction from pyrolytic liquid of Azadirachta indica biomass followed by subsequent characterization of pyrolysis products," Renewable Energy, Elsevier, vol. 219(P1).
    3. Park, Young-Kwon & Yoo, Myung Lang & Jin, Sung Ho & Park, Sung Hoon, 2015. "Catalytic fast pyrolysis of waste pepper stems over HZSM-5," Renewable Energy, Elsevier, vol. 79(C), pages 20-27.
    4. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    5. Kumar, Sanjoy & Ghosh, Prosenjit, 2018. "Sustainable bio-energy potential of perennial energy grass from reclaimed coalmine spoil (marginal sites) of India," Renewable Energy, Elsevier, vol. 123(C), pages 475-485.
    6. Gurtner, D. & Kresta, M. & Hupfauf, B. & Götz, P. & Nussbaumer, R. & Hofmann, A. & Pfeifer, C., 2023. "Mechanical strength characterisation of pyrolysis biochar from woody biomass," Energy, Elsevier, vol. 285(C).
    7. Gurevich Messina, L.I. & Bonelli, P.R. & Cukierman, A.L., 2017. "Effect of acid pretreatment and process temperature on characteristics and yields of pyrolysis products of peanut shells," Renewable Energy, Elsevier, vol. 114(PB), pages 697-707.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Hyung Won & Choi, Suek Joo & Jeon, Jong-Ki & Park, Sung Hoon & Jung, Sang-Chul & Park, Young-Kwon, 2015. "Catalytic conversion of waste particle board and polypropylene over H-beta and HY zeolites," Renewable Energy, Elsevier, vol. 79(C), pages 9-13.
    2. Ahmed, Gaffer & Kishore, Nanda, 2024. "Synergistic effects on properties of biofuel and biochar produced through co-feed pyrolysis of Erythrina indica and Azadirachta indica biomass," Renewable Energy, Elsevier, vol. 227(C).
    3. Taghizadeh-Alisaraei, Ahmad & Assar, Hossein Alizadeh & Ghobadian, Barat & Motevali, Ali, 2017. "Potential of biofuel production from pistachio waste in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 510-522.
    4. Xie, Yingpu & Zeng, Kuo & Flamant, Gilles & Yang, Haiping & Liu, Nian & He, Xiao & Yang, Xinyi & Nzihou, Ange & Chen, Hanping, 2019. "Solar pyrolysis of cotton stalk in molten salt for bio-fuel production," Energy, Elsevier, vol. 179(C), pages 1124-1132.
    5. Leng, Lijian & Li, Hui & Yuan, Xingzhong & Zhou, Wenguang & Huang, Huajun, 2018. "Bio-oil upgrading by emulsification/microemulsification: A review," Energy, Elsevier, vol. 161(C), pages 214-232.
    6. Kasmuri, N.H. & Kamarudin, S.K. & Abdullah, S.R.S. & Hasan, H.A. & Som, A.Md., 2017. "Process system engineering aspect of bio-alcohol fuel production from biomass via pyrolysis: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 914-923.
    7. Mishra, Ranjeet Kumar & Mohanty, Kaustubha, 2019. "Pyrolysis of three waste biomass: Effect of biomass bed thickness and distance between successive beds on pyrolytic products yield and properties," Renewable Energy, Elsevier, vol. 141(C), pages 549-558.
    8. Braimakis, Konstantinos & Atsonios, Konstantinos & Panopoulos, Kyriakos D. & Karellas, Sotirios & Kakaras, Emmanuel, 2014. "Economic evaluation of decentralized pyrolysis for the production of bio-oil as an energy carrier for improved logistics towards a large centralized gasification plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 57-72.
    9. Jin, Sung Ho & Lee, Hyung Won & Ryu, Changkook & Jeon, Jong-Ki & Park, Young-Kwon, 2015. "Catalytic fast pyrolysis of Geodae-Uksae 1 over zeolites," Energy, Elsevier, vol. 81(C), pages 41-46.
    10. Nanduri, Arvind & Kulkarni, Shreesh S. & Mills, Patrick L., 2021. "Experimental techniques to gain mechanistic insight into fast pyrolysis of lignocellulosic biomass: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    11. Zhang, Pengchao & Hu, Hongyun & Tang, Hua & Yang, Yuhan & Liu, Huan & Lu, Qiang & Li, Xian & Worasuwannarak, Nakorn & Yao, Hong, 2019. "In-depth experimental study of pyrolysis characteristics of raw and cooking treated shrimp shell samples," Renewable Energy, Elsevier, vol. 139(C), pages 730-738.
    12. Liaqat Ali & Khurshid Ahmed Baloch & Arkom Palamanit & Shan Ali Raza & Sawanya Laohaprapanon & Kuaanan Techato, 2021. "Physicochemical Characterisation and the Prospects of Biofuel Production from Rubberwood Sawdust and Sewage Sludge," Sustainability, MDPI, vol. 13(11), pages 1-16, May.
    13. Mousavi-Avval, Seyed Hashem & Sahoo, Kamalakanta & Nepal, Prakash & Runge, Troy & Bergman, Richard, 2023. "Environmental impacts and techno-economic assessments of biobased products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    14. Fernandez, Enara & Santamaria, Laura & Amutio, Maider & Artetxe, Maite & Arregi, Aitor & Lopez, Gartzen & Bilbao, Javier & Olazar, Martin, 2022. "Role of temperature in the biomass steam pyrolysis in a conical spouted bed reactor," Energy, Elsevier, vol. 238(PC).
    15. Wang, Tengfei & Zhai, Yunbo & Zhu, Yun & Li, Caiting & Zeng, Guangming, 2018. "A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 223-247.
    16. Hasan, M.M. & Rasul, M.G. & Ashwath, N. & Khan, M.M.K. & Jahirul, M.I., 2022. "Fast pyrolysis of Beauty Leaf Fruit Husk (BLFH) in an auger reactor: Effect of temperature on the yield and physicochemical properties of BLFH oil," Renewable Energy, Elsevier, vol. 194(C), pages 1098-1109.
    17. Anand, Abhijeet & Kumar, Vivek & Kaushal, Priyanka, 2022. "Biochar and its twin benefits: Crop residue management and climate change mitigation in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    18. Perkins, Greg & Batalha, Nuno & Kumar, Adarsh & Bhaskar, Thallada & Konarova, Muxina, 2019. "Recent advances in liquefaction technologies for production of liquid hydrocarbon fuels from biomass and carbonaceous wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    19. Bhoi, P.R. & Ouedraogo, A.S. & Soloiu, V. & Quirino, R., 2020. "Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    20. Cai, Junmeng & Xu, Di & Dong, Zhujun & Yu, Xi & Yang, Yang & Banks, Scott W. & Bridgwater, Anthony V., 2018. "Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2705-2715.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:65:y:2014:i:c:p:41-48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.