IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i12p2272-d122229.html
   My bibliography  Save this article

Advanced Strategies for Net-Zero Energy Building: Focused on the Early Phase and Usage Phase of a Building’s Life Cycle

Author

Listed:
  • Jeongyoon Oh

    (Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Korea)

  • Taehoon Hong

    (Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Korea)

  • Hakpyeong Kim

    (Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Korea)

  • Jongbaek An

    (Department of Architectural Engineering, Sejong University, Seoul 05006, Korea)

  • Kwangbok Jeong

    (Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Korea)

  • Choongwan Koo

    (Department of Building Services Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China)

Abstract

To cope with ‘Post-2020’, each country set its national greenhouse gas (GHG) emissions reduction target (e.g., South Korea: 37%) below its business-as-usual level by 2030. Toward this end, it is necessary to implement the net-zero energy building (nZEB) in the building sector, which accounts for more than 25% of the national GHG emissions and has a great potential to reduce GHG emissions. In this context, this study conducted a state-of-the-art review of nZEB implementation strategies in terms of passive strategies (i.e., passive sustainable design and energy-saving technique) and active strategies (i.e., renewable energy (RE) and back-up system for RE). Additionally, this study proposed the following advanced strategies for nZEB implementation according to a building’s life cycle: (i) integration and optimization of the passive and active strategies in the early phase of a building’s life cycle; (ii) real-time monitoring of the energy performance during the usage phase of a building’s life cycle. It is expected that this study can help researchers, practitioners, and policymakers understand the overall implementation strategies for realizing nZEB.

Suggested Citation

  • Jeongyoon Oh & Taehoon Hong & Hakpyeong Kim & Jongbaek An & Kwangbok Jeong & Choongwan Koo, 2017. "Advanced Strategies for Net-Zero Energy Building: Focused on the Early Phase and Usage Phase of a Building’s Life Cycle," Sustainability, MDPI, vol. 9(12), pages 1-52, December.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:12:p:2272-:d:122229
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/12/2272/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/12/2272/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Jae Bum & Park, Jae Wan & Yoon, Jong Ho & Baek, Nam Choon & Kim, Dai Kon & Shin, U. Cheul, 2014. "An empirical study of performance characteristics of BIPV (Building Integrated Photovoltaic) system for the realization of zero energy building," Energy, Elsevier, vol. 66(C), pages 25-34.
    2. Abanda, F.H. & Byers, L., 2016. "An investigation of the impact of building orientation on energy consumption in a domestic building using emerging BIM (Building Information Modelling)," Energy, Elsevier, vol. 97(C), pages 517-527.
    3. Hong, Taehoon & Koo, Choongwan & Oh, Jeongyoon & Jeong, Kwangbok, 2017. "Nonlinearity analysis of the shading effect on the technical–economic performance of the building-integrated photovoltaic blind," Applied Energy, Elsevier, vol. 194(C), pages 467-480.
    4. Lu, L. & Yang, H.X., 2010. "Environmental payback time analysis of a roof-mounted building-integrated photovoltaic (BIPV) system in Hong Kong," Applied Energy, Elsevier, vol. 87(12), pages 3625-3631, December.
    5. Oh, Jeongyoon & Koo, Choongwan & Hong, Taehoon & Jeong, Kwangbok & Lee, Minhyun, 2017. "An economic impact analysis of residential progressive electricity tariffs in implementing the building-integrated photovoltaic blind using an advanced finite element model," Applied Energy, Elsevier, vol. 202(C), pages 259-274.
    6. Koo, Choongwan & Hong, Taehoon & Lee, Minhyun & Kim, Jimin, 2016. "An integrated multi-objective optimization model for determining the optimal solution in implementing the rooftop photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 822-837.
    7. Kang, Eun Chul & Riederer, Peter & Yoo, Seong Yeon & Lee, Euy Joon, 2013. "New approach to evaluate the seasonal performance of building integrated geothermal heat pump system," Renewable Energy, Elsevier, vol. 54(C), pages 51-54.
    8. Kim, Jimin & Hong, Taehoon & Jeong, Jaemin & Lee, Myeonghwi & Koo, Choongwan & Lee, Minhyun & Ji, Changyoon & Jeong, Jaewook, 2016. "An integrated multi-objective optimization model for determining the optimal solution in the solar thermal energy system," Energy, Elsevier, vol. 102(C), pages 416-426.
    9. Alimohammadisagvand, Behrang & Jokisalo, Juha & Kilpeläinen, Simo & Ali, Mubbashir & Sirén, Kai, 2016. "Cost-optimal thermal energy storage system for a residential building with heat pump heating and demand response control," Applied Energy, Elsevier, vol. 174(C), pages 275-287.
    10. Hong, Taehoon & Lee, Minhyun & Koo, Choongwan & Jeong, Kwangbok & Kim, Jimin, 2017. "Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis," Applied Energy, Elsevier, vol. 194(C), pages 320-332.
    11. Huang, Yu & Niu, Jian-lei & Chung, Tse-ming, 2013. "Study on performance of energy-efficient retrofitting measures on commercial building external walls in cooling-dominant cities," Applied Energy, Elsevier, vol. 103(C), pages 97-108.
    12. Jin, Xiaolong & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Jiang, Tao & Yu, Xiaodan, 2017. "Dynamic economic dispatch of a hybrid energy microgrid considering building based virtual energy storage system," Applied Energy, Elsevier, vol. 194(C), pages 386-398.
    13. Ma, Peizheng & Wang, Lin-Shu & Guo, Nianhua, 2015. "Maximum window-to-wall ratio of a thermally autonomous building as a function of envelope U-value and ambient temperature amplitude," Applied Energy, Elsevier, vol. 146(C), pages 84-91.
    14. Taehoon Hong & Jimin Kim & Myeongsoo Chae & Joonho Park & Jaemin Jeong & Minhyun Lee, 2016. "Sensitivity Analysis on the Impact Factors of the GSHP System Considering Energy Generation and Environmental Impact Using LCA," Sustainability, MDPI, vol. 8(4), pages 1-28, April.
    15. Khosrowpour, Ardalan & Xie, Yimeng & Taylor, John E. & Hong, Yili, 2016. "One size does not fit all: Establishing the need for targeted eco-feedback," Applied Energy, Elsevier, vol. 184(C), pages 523-530.
    16. Hong, Taehoon & Kim, Daeho & Koo, Choongwan & Kim, Jimin, 2014. "Framework for establishing the optimal implementation strategy of a fuel-cell-based combined heat and power system: Focused on multi-family housing complex," Applied Energy, Elsevier, vol. 127(C), pages 11-24.
    17. Brandão de Vasconcelos, Ana & Cabaço, António & Pinheiro, Manuel Duarte & Manso, Armando, 2016. "The impact of building orientation and discount rates on a Portuguese reference building refurbishment decision," Energy Policy, Elsevier, vol. 91(C), pages 329-340.
    18. Tong, Zheming & Chen, Yujiao & Malkawi, Ali, 2017. "Estimating natural ventilation potential for high-rise buildings considering boundary layer meteorology," Applied Energy, Elsevier, vol. 193(C), pages 276-286.
    19. Hammond, Geoffrey P. & Harajli, Hassan A. & Jones, Craig I. & Winnett, Adrian B., 2012. "Whole systems appraisal of a UK Building Integrated Photovoltaic (BIPV) system: Energy, environmental, and economic evaluations," Energy Policy, Elsevier, vol. 40(C), pages 219-230.
    20. Park, Hyo Seon & Koo, Choongwan & Hong, Taehoon & Oh, Jeongyoon & Jeong, Kwangbok, 2016. "A finite element model for estimating the techno-economic performance of the building-integrated photovoltaic blind," Applied Energy, Elsevier, vol. 179(C), pages 211-227.
    21. Yang, An-Shik & Su, Ying-Ming & Wen, Chih-Yung & Juan, Yu-Hsuan & Wang, Wei-Siang & Cheng, Chiang-Ho, 2016. "Estimation of wind power generation in dense urban area," Applied Energy, Elsevier, vol. 171(C), pages 213-230.
    22. Chae, Young Tae & Kim, Jeehwan & Park, Hongsik & Shin, Byungha, 2014. "Building energy performance evaluation of building integrated photovoltaic (BIPV) window with semi-transparent solar cells," Applied Energy, Elsevier, vol. 129(C), pages 217-227.
    23. Bornatico, Raffaele & Pfeiffer, Michael & Witzig, Andreas & Guzzella, Lino, 2012. "Optimal sizing of a solar thermal building installation using particle swarm optimization," Energy, Elsevier, vol. 41(1), pages 31-37.
    24. Araya, R. & Bustos, F. & Contreras, J. & Fuentes, A., 2017. "Life-cycle savings for a flat-plate solar water collector plant in Chile," Renewable Energy, Elsevier, vol. 112(C), pages 365-377.
    25. Anderson, Kyle & Song, Kwonsik & Lee, SangHyun & Krupka, Erin & Lee, Hyunsoo & Park, Moonseo, 2017. "Longitudinal analysis of normative energy use feedback on dormitory occupants," Applied Energy, Elsevier, vol. 189(C), pages 623-639.
    26. Hemsath, Timothy L. & Alagheband Bandhosseini, Kaveh, 2015. "Sensitivity analysis evaluating basic building geometry's effect on energy use," Renewable Energy, Elsevier, vol. 76(C), pages 526-538.
    27. Self, Stuart J. & Reddy, Bale V. & Rosen, Marc A., 2013. "Geothermal heat pump systems: Status review and comparison with other heating options," Applied Energy, Elsevier, vol. 101(C), pages 341-348.
    28. Ma, Tao & Yang, Hongxing & Lu, Lin, 2015. "Development of hybrid battery–supercapacitor energy storage for remote area renewable energy systems," Applied Energy, Elsevier, vol. 153(C), pages 56-62.
    29. Peng, Jinqing & Curcija, Dragan C. & Lu, Lin & Selkowitz, Stephen E. & Yang, Hongxing & Zhang, Weilong, 2016. "Numerical investigation of the energy saving potential of a semi-transparent photovoltaic double-skin facade in a cool-summer Mediterranean climate," Applied Energy, Elsevier, vol. 165(C), pages 345-356.
    30. Wood, Christopher J. & Liu, Hao & Riffat, Saffa B., 2010. "An investigation of the heat pump performance and ground temperature of a piled foundation heat exchanger system for a residential building," Energy, Elsevier, vol. 35(12), pages 4932-4940.
    31. Lam, Joseph C. & Tsang, C.L. & Li, Danny H.W. & Cheung, S.O., 2005. "Residential building envelope heat gain and cooling energy requirements," Energy, Elsevier, vol. 30(7), pages 933-951.
    32. Jimin Kim & Taehoon Hong & Myeongsoo Chae & Choongwan Koo & Jaemin Jeong, 2015. "An Environmental and Economic Assessment for Selecting the Optimal Ground Heat Exchanger by Considering the Entering Water Temperature," Energies, MDPI, vol. 8(8), pages 1-25, July.
    33. Daeho Kim & Jimin Kim & Choongwan Koo & Taehoon Hong, 2014. "An Economic and Environmental Assessment Model for Selecting the Optimal Implementation Strategy of Fuel Cell Systems—A Focus on Building Energy Policy," Energies, MDPI, vol. 7(8), pages 1-22, August.
    34. Anderson, Kyle & Lee, SangHyun, 2016. "An empirically grounded model for simulating normative energy use feedback interventions," Applied Energy, Elsevier, vol. 173(C), pages 272-282.
    35. Taleghani, Mohammad & Tenpierik, Martin & van den Dobbelsteen, Andy, 2014. "Energy performance and thermal comfort of courtyard/atrium dwellings in the Netherlands in the light of climate change," Renewable Energy, Elsevier, vol. 63(C), pages 486-497.
    36. Connolly, D. & Lund, H. & Mathiesen, B.V. & Pican, E. & Leahy, M., 2012. "The technical and economic implications of integrating fluctuating renewable energy using energy storage," Renewable Energy, Elsevier, vol. 43(C), pages 47-60.
    37. Ordóñez, J. & Jadraque, E. & Alegre, J. & Martínez, G., 2010. "Analysis of the photovoltaic solar energy capacity of residential rooftops in Andalusia (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2122-2130, September.
    38. Koo, Choongwan & Park, Sungki & Hong, Taehoon & Park, Hyo Seon, 2014. "An estimation model for the heating and cooling demand of a residential building with a different envelope design using the finite element method," Applied Energy, Elsevier, vol. 115(C), pages 205-215.
    39. He, Yueer & Liu, Meng & Kvan, Thomas & Peng, Shini, 2017. "An enthalpy-based energy savings estimation method targeting thermal comfort level in naturally ventilated buildings in hot-humid summer zones," Applied Energy, Elsevier, vol. 187(C), pages 717-731.
    40. Koo, Choongwan & Hong, Taehoon & Jeong, Kwangbok & Ban, Cheolwoo & Oh, Jeongyoon, 2017. "Development of the smart photovoltaic system blind and its impact on net-zero energy solar buildings using technical-economic-political analyses," Energy, Elsevier, vol. 124(C), pages 382-396.
    41. Olivieri, L. & Caamaño-Martín, E. & Moralejo-Vázquez, F.J. & Martín-Chivelet, N. & Olivieri, F. & Neila-Gonzalez, F.J., 2014. "Energy saving potential of semi-transparent photovoltaic elements for building integration," Energy, Elsevier, vol. 76(C), pages 572-583.
    42. Daouas, Naouel, 2011. "A study on optimum insulation thickness in walls and energy savings in Tunisian buildings based on analytical calculation of cooling and heating transmission loads," Applied Energy, Elsevier, vol. 88(1), pages 156-164, January.
    43. Balduzzi, Francesco & Bianchini, Alessandro & Carnevale, Ennio Antonio & Ferrari, Lorenzo & Magnani, Sandro, 2012. "Feasibility analysis of a Darrieus vertical-axis wind turbine installation in the rooftop of a building," Applied Energy, Elsevier, vol. 97(C), pages 921-929.
    44. Seo, Dong-yeon & Koo, Choongwan & Hong, Taehoon, 2015. "A Lagrangian finite element model for estimating the heating and cooling demand of a residential building with a different envelope design," Applied Energy, Elsevier, vol. 142(C), pages 66-79.
    45. Vieira, Filomeno M. & Moura, Pedro S. & de Almeida, Aníbal T., 2017. "Energy storage system for self-consumption of photovoltaic energy in residential zero energy buildings," Renewable Energy, Elsevier, vol. 103(C), pages 308-320.
    46. Adam, Alexandros & Fraga, Eric S. & Brett, Dan J.L., 2015. "Options for residential building services design using fuel cell based micro-CHP and the potential for heat integration," Applied Energy, Elsevier, vol. 138(C), pages 685-694.
    47. Chow, Stanley K.H. & Li, Danny H.W. & Lee, Eric W.M. & Lam, Joseph C., 2013. "Analysis and prediction of daylighting and energy performance in atrium spaces using daylight-linked lighting controls," Applied Energy, Elsevier, vol. 112(C), pages 1016-1024.
    48. Motte, Fabrice & Notton, Gilles & Cristofari, Christian & Canaletti, Jean-Louis, 2013. "Design and modelling of a new patented thermal solar collector with high building integration," Applied Energy, Elsevier, vol. 102(C), pages 631-639.
    49. Taehoon Hong & Jimin Kim & Juyoung Lee & Choongwan Koo & Hyo Seon Park, 2013. "Assessment of Seasonal Energy Efficiency Strategies of a Double Skin Façade in a Monsoon Climate Region," Energies, MDPI, vol. 6(9), pages 1-25, August.
    50. Hong, Taehoon & Koo, Choongwan & Park, Joonho & Park, Hyo Seon, 2014. "A GIS (geographic information system)-based optimization model for estimating the electricity generation of the rooftop PV (photovoltaic) system," Energy, Elsevier, vol. 65(C), pages 190-199.
    51. Turner, W.J.N. & Walker, I.S. & Roux, J., 2015. "Peak load reductions: Electric load shifting with mechanical pre-cooling of residential buildings with low thermal mass," Energy, Elsevier, vol. 82(C), pages 1057-1067.
    52. Lin, Yu-Hao & Tsai, Kang-Ting & Lin, Min-Der & Yang, Ming-Der, 2016. "Design optimization of office building envelope configurations for energy conservation," Applied Energy, Elsevier, vol. 171(C), pages 336-346.
    53. Li, Yongcai & Liu, Shuli, 2014. "Experimental study on thermal performance of a solar chimney combined with PCM," Applied Energy, Elsevier, vol. 114(C), pages 172-178.
    54. Afshin, M. & Sohankar, A. & Manshadi, M. Dehghan & Esfeh, M. Kazemi, 2016. "An experimental study on the evaluation of natural ventilation performance of a two-sided wind-catcher for various wind angles," Renewable Energy, Elsevier, vol. 85(C), pages 1068-1078.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Javier M. Rey-Hernández & Eloy Velasco-Gómez & Julio F. San José-Alonso & Ana Tejero-González & Sergio L. González-González & Francisco J. Rey-Martínez, 2018. "Monitoring Data Study of the Performance of Renewable Energy Systems in a Near Zero Energy Building in Spain: A Case Study," Energies, MDPI, vol. 11(11), pages 1-17, November.
    2. Kwan Byum Maeng & Jiyeon Jung & Yoonmo Koo, 2019. "Quantitative Analysis of Consumer Preferences of Windows Set in South Korea: The Role of Energy Efficiency Levels," Energies, MDPI, vol. 12(9), pages 1-12, May.
    3. María Beatriz Piderit & Franklin Vivanco & Geoffrey van Moeseke & Shady Attia, 2019. "Net Zero Buildings—A Framework for an Integrated Policy in Chile," Sustainability, MDPI, vol. 11(5), pages 1-18, March.
    4. Yue Yuan & Jisoo Shim & Seungkeon Lee & Doosam Song & Joowook Kim, 2020. "Prediction for Overheating Risk Based on Deep Learning in a Zero Energy Building," Sustainability, MDPI, vol. 12(21), pages 1-20, October.
    5. Karel Struhala & Miroslav Čekon & Richard Slávik, 2018. "Life Cycle Assessment of Solar Façade Concepts Based on Transparent Insulation Materials," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    6. Uk-Joo Sung & Seok-Hyun Kim, 2019. "Development of a Passive and Active Technology Package Standard and Database for Application to Zero Energy Buildings in South Korea," Energies, MDPI, vol. 12(9), pages 1-23, May.
    7. Insub Choi & JunHee Kim & DongWon Kim, 2020. "LCA-Based Investigation of Environmental Impacts for Novel Double-Beam Floor System Subjected to High Gravity Loads," Sustainability, MDPI, vol. 12(21), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oh, Jeongyoon & Koo, Choongwan & Hong, Taehoon & Cha, Seung Hyun, 2018. "An integrated model for estimating the techno-economic performance of the distributed solar generation system on building façades: Focused on energy demand and supply," Applied Energy, Elsevier, vol. 228(C), pages 1071-1090.
    2. Oh, Jeongyoon & Koo, Choongwan & Hong, Taehoon & Jeong, Kwangbok & Lee, Minhyun, 2017. "An economic impact analysis of residential progressive electricity tariffs in implementing the building-integrated photovoltaic blind using an advanced finite element model," Applied Energy, Elsevier, vol. 202(C), pages 259-274.
    3. Koo, Choongwan & Hong, Taehoon & Oh, Jeongyoon & Choi, Jun-Ki, 2018. "Improving the prediction performance of the finite element model for estimating the technical performance of the distributed generation of solar power system in a building façade," Applied Energy, Elsevier, vol. 215(C), pages 41-53.
    4. Seo, Dong-yeon & Koo, Choongwan & Hong, Taehoon, 2015. "A Lagrangian finite element model for estimating the heating and cooling demand of a residential building with a different envelope design," Applied Energy, Elsevier, vol. 142(C), pages 66-79.
    5. Park, Hyo Seon & Koo, Choongwan & Hong, Taehoon & Oh, Jeongyoon & Jeong, Kwangbok, 2016. "A finite element model for estimating the techno-economic performance of the building-integrated photovoltaic blind," Applied Energy, Elsevier, vol. 179(C), pages 211-227.
    6. Koo, Choongwan & Hong, Taehoon & Kim, Jimin & Kim, Hyunjoong, 2015. "An integrated multi-objective optimization model for establishing the low-carbon scenario 2020 to achieve the national carbon emissions reduction target for residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 410-425.
    7. Hong, Taehoon & Koo, Choongwan & Oh, Jeongyoon & Jeong, Kwangbok, 2017. "Nonlinearity analysis of the shading effect on the technical–economic performance of the building-integrated photovoltaic blind," Applied Energy, Elsevier, vol. 194(C), pages 467-480.
    8. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.
    9. Kim, Jimin & Hong, Taehoon & Jeong, Jaemin & Lee, Myeonghwi & Koo, Choongwan & Lee, Minhyun & Ji, Changyoon & Jeong, Jaewook, 2016. "An integrated multi-objective optimization model for determining the optimal solution in the solar thermal energy system," Energy, Elsevier, vol. 102(C), pages 416-426.
    10. Yu, Guoqing & Yang, Hongxing & Luo, Daina & Cheng, Xu & Ansah, Mark Kyeredey, 2021. "A review on developments and researches of building integrated photovoltaic (BIPV) windows and shading blinds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    11. Jeong, Kwangbok & Hong, Taehoon & Kim, Jimin & Cho, Kyuman, 2019. "Development of a multi-objective optimization model for determining the optimal CO2 emissions reduction strategies for a multi-family housing complex," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 118-131.
    12. Lee, Minhyun & Hong, Taehoon & Yoo, Hyunji & Koo, Choongwan & Kim, Jimin & Jeong, Kwangbok & Jeong, Jaewook & Ji, Changyoon, 2017. "Establishment of a base price for the Solar Renewable Energy Credit (SREC) from the perspective of residents and state governments in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1066-1080.
    13. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Xie, Lei & Wang, Xiliang & Wu, Jing, 2018. "Experimental study and performance evaluation of a PV-blind embedded double skin façade in winter season," Energy, Elsevier, vol. 165(PB), pages 326-342.
    14. Li, Meng & Ma, Tao & Liu, Jiaying & Li, Huanhuan & Xu, Yaling & Gu, Wenbo & Shen, Lu, 2019. "Numerical and experimental investigation of precast concrete facade integrated with solar photovoltaic panels," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Bjørn Petter Jelle, 2015. "Building Integrated Photovoltaics: A Concise Description of the Current State of the Art and Possible Research Pathways," Energies, MDPI, vol. 9(1), pages 1-30, December.
    16. Kong, Minjin & Hong, Taehoon & Ji, Changyoon & Kang, Hyuna & Lee, Minhyun, 2020. "Development of building driven-energy payback time for energy transition of building with renewable energy systems," Applied Energy, Elsevier, vol. 271(C).
    17. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
    18. Yoo, Hyunji & Hong, Taehoon & Jeong, Kwangbok & Ji, Changyoon, 2018. "Estimation of the optimal government rebate for promoting the photovoltaic system in multi-family housing complexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 720-728.
    19. Paolo Corti & Pierluigi Bonomo & Francesco Frontini, 2023. "Paper Review of External Integrated Systems as Photovoltaic Shading Devices," Energies, MDPI, vol. 16(14), pages 1-21, July.
    20. Chan-Joong Kim & Taehoon Hong & Jimin Kim & Daeho Kim & Dong-yeon Seo, 2015. "A Process for the Implementation of New Renewable Energy Systems in a Building by Considering Environmental and Economic Effect," Sustainability, MDPI, vol. 7(9), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:12:p:2272-:d:122229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.