IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v60y2013icp481-488.html
   My bibliography  Save this article

Alkaline-catalyzed transesterification of Silurus triostegus Heckel fish oil: Optimization of transesterification parameters

Author

Listed:
  • Fadhil, Abdelrahman B.
  • Ali, Latif H.

Abstract

The present work reports the production of biodiesel from Silurus triostegus Heckel fish oil (STFO) through alkaline-catalyzed transesterification by using potassium hydroxide (KOH) as an alkaline catalyst with methanol. Chemical and physical properties of the extracted oil were determined. It was found that STFO has a low acid value (1.90 mg KOH/g oil); hence no pre-treatment such as acid esterification is required to produce the biodiesel. The influence of the experimental parameters such as KOH concentration (0.25–1.0% w/w of oil), methanol to oil molar ratio (3:1, 6:1, 9:1 and 12:1), reaction temperature (32, 45 and 60 °C), reaction duration (30, 60, 90 and 120 min), type of the catalyst (potassium or sodium hydroxide) and step multiplicity (single- and two-step transesterification) on the yield of the biodiesel were investigated. The maximum biodiesel yield (96%) was obtained under the optimized parameters of the transesterification (KOH 0.50% w/w, 6:1 methanol to oil, at 32 °C for 60 min). The properties of the produced biodiesel were found to conform with the ASTM standard, indicating its suitability for internal combustion engines. Blending of the produced biodiesel with petro diesel with various volume percentages was investigated as well.

Suggested Citation

  • Fadhil, Abdelrahman B. & Ali, Latif H., 2013. "Alkaline-catalyzed transesterification of Silurus triostegus Heckel fish oil: Optimization of transesterification parameters," Renewable Energy, Elsevier, vol. 60(C), pages 481-488.
  • Handle: RePEc:eee:renene:v:60:y:2013:i:c:p:481-488
    DOI: 10.1016/j.renene.2013.04.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113002838
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.04.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Atapour, Mehdi & Kariminia, Hamid-Reza, 2011. "Characterization and transesterification of Iranian bitter almond oil for biodiesel production," Applied Energy, Elsevier, vol. 88(7), pages 2377-2381, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takase, Mohammed & Zhao, Ting & Zhang, Min & Chen, Yao & Liu, Hongyang & Yang, Liuqing & Wu, Xiangyang, 2015. "An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 495-520.
    2. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    3. Kudre, Tanaji G. & Bhaskar, N. & Sakhare, Patiram Z., 2017. "Optimization and characterization of biodiesel production from rohu (Labeo rohita) processing waste," Renewable Energy, Elsevier, vol. 113(C), pages 1408-1418.
    4. Rajak, Upendra & Nashine, Prerana & Verma, Tikendra Nath, 2019. "Assessment of diesel engine performance using spirulina microalgae biodiesel," Energy, Elsevier, vol. 166(C), pages 1025-1036.
    5. Avhad, M.R. & Marchetti, J.M., 2015. "A review on recent advancement in catalytic materials for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 696-718.
    6. Safaripour, Maryam & Saidi, Majid & Nodeh, Hamid Rashidi, 2023. "Synthesis and application of barium tin oxide-reduced graphene oxide nanocomposite as a highly stable heterogeneous catalyst for the biodiesel production," Renewable Energy, Elsevier, vol. 217(C).
    7. Ning, Yilin & Niu, Shengli & Wang, Yongzheng & Zhao, Jianli & Lu, Chunmei, 2021. "Sono-modified halloysite nanotube with NaAlO2 as novel heterogeneous catalyst for biodiesel production: Optimization via GA_BP neural network," Renewable Energy, Elsevier, vol. 175(C), pages 391-404.
    8. Moraes, Paola S. & Igansi, Andrei V. & Cadaval, Tito R.S. & Pinto, Luiz A.A., 2020. "Biodiesel produced from crude, degummed, neutralized and bleached oils of Nile tilapia waste: Production efficiency, physical-chemical quality and economic viability," Renewable Energy, Elsevier, vol. 161(C), pages 110-119.
    9. Yang, Liuqing & Takase, Mohammed & Zhang, Min & Zhao, Ting & Wu, Xiangyang, 2014. "Potential non-edible oil feedstock for biodiesel production in Africa: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 461-477.
    10. Marta Ramos & Ana Paula Soares Dias & Jaime Filipe Puna & João Gomes & João Carlos Bordado, 2019. "Biodiesel Production Processes and Sustainable Raw Materials," Energies, MDPI, vol. 12(23), pages 1-30, November.
    11. Cardoso, Luana da Costa & Almeida, Fernanda Naiara Campos de & Souza, Gredson Keiff & Asanome, Isabela Yumi & Pereira, Nehemias Curvelo, 2019. "Synthesis and optimization of ethyl esters from fish oil waste for biodiesel production," Renewable Energy, Elsevier, vol. 133(C), pages 743-748.
    12. Balajii, Muthusamy & Niju, Subramaniapillai, 2020. "Banana peduncle – A green and renewable heterogeneous base catalyst for biodiesel production from Ceiba pentandra oil," Renewable Energy, Elsevier, vol. 146(C), pages 2255-2269.
    13. García-Moreno, Pedro J. & Khanum, Mohriam & Guadix, Antonio & Guadix, Emilia M., 2014. "Optimization of biodiesel production from waste fish oil," Renewable Energy, Elsevier, vol. 68(C), pages 618-624.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    2. Subramaniam, D. & Murugesan, A. & Avinash, A. & Kumaravel, A., 2013. "Bio-diesel production and its engine characteristics—An expatiate view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 361-370.
    3. Abo El-Enin, S.A. & Attia, N.K. & El-Ibiari, N.N. & El-Diwani, G.I. & El-Khatib, K.M., 2013. "In-situ transesterification of rapeseed and cost indicators for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 471-477.
    4. Lian, Shuang & Li, Huijuan & Tang, Jinqiang & Tong, Dongmei & Hu, Changwei, 2012. "Integration of extraction and transesterification of lipid from jatropha seeds for the production of biodiesel," Applied Energy, Elsevier, vol. 98(C), pages 540-547.
    5. Atadashi, I.M. & Aroua, M.K. & Aziz, A.R. Abdul & Sulaiman, N.M.N., 2011. "Refining technologies for the purification of crude biodiesel," Applied Energy, Elsevier, vol. 88(12), pages 4239-4251.
    6. Kudre, Tanaji G. & Bhaskar, N. & Sakhare, Patiram Z., 2017. "Optimization and characterization of biodiesel production from rohu (Labeo rohita) processing waste," Renewable Energy, Elsevier, vol. 113(C), pages 1408-1418.
    7. Dehghan, Leila & Golmakani, Mohammad-Taghi & Hosseini, Seyed Mohammad Hashem, 2019. "Optimization of microwave-assisted accelerated transesterification of inedible olive oil for biodiesel production," Renewable Energy, Elsevier, vol. 138(C), pages 915-922.
    8. Deeba, Farha & Kumar, Bijender & Arora, Neha & Singh, Sauraj & Kumar, Anuj & Han, Sung Soo & Negi, Yuvraj S., 2020. "Novel bio-based solid acid catalyst derived from waste yeast residue for biodiesel production," Renewable Energy, Elsevier, vol. 159(C), pages 127-139.
    9. Lim, Steven & Lee, Keat Teong, 2013. "Process intensification for biodiesel production from Jatropha curcas L. seeds: Supercritical reactive extraction process parameters study," Applied Energy, Elsevier, vol. 103(C), pages 712-720.
    10. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Zarei, Alireza & Noshadi, Iman, 2013. "Transesterification of waste cooking oil by heteropoly acid (HPA) catalyst: Optimization and kinetic model," Applied Energy, Elsevier, vol. 102(C), pages 283-292.
    11. Li, Ji & Peng, Xiao & Luo, Meng & Zhao, Chun-Jian & Gu, Cheng-Bo & Zu, Yuan-Gang & Fu, Yu-Jie, 2014. "Biodiesel production from Camptotheca acuminata seed oil catalyzed by novel Brönsted–Lewis acidic ionic liquid," Applied Energy, Elsevier, vol. 115(C), pages 438-444.
    12. Inam Ullah Khan & Zhenhua Yan & Jun Chen, 2020. "Production and Characterization of Biodiesel Derived from a Novel Source Koelreuteria paniculata Seed Oil," Energies, MDPI, vol. 13(4), pages 1-15, February.
    13. Sahar Safarian & Sorena Sattari & Zeinab Hamidzadeh, 2018. "Sustainability Assessment of Biodiesel Supply Chain from Various Biomasses and Conversion Technologies," Biophysical Economics and Resource Quality, Springer, vol. 3(2), pages 1-15, June.
    14. Rathmann, Régis & Szklo, Alexandre & Schaeffer, Roberto, 2012. "Targets and results of the Brazilian Biodiesel Incentive Program – Has it reached the Promised Land?," Applied Energy, Elsevier, vol. 97(C), pages 91-100.
    15. Zafreen Elahi & Fauzan Mohd Jakarni & Ratnasamy Muniandy & Salihudin Hassim & Mohd Shahrizal Ab Razak & Anwaar Hazoor Ansari & Mohamed Meftah Ben Zair, 2021. "Waste Cooking Oil as a Sustainable Bio Modifier for Asphalt Modification: A Review," Sustainability, MDPI, vol. 13(20), pages 1-27, October.
    16. Jahirul, M.I. & Rasul, M.G. & Brown, R.J. & Senadeera, W. & Hosen, M.A. & Haque, R. & Saha, S.C. & Mahlia, T.M.I., 2021. "Investigation of correlation between chemical composition and properties of biodiesel using principal component analysis (PCA) and artificial neural network (ANN)," Renewable Energy, Elsevier, vol. 168(C), pages 632-646.
    17. Adama, K.K. & Aluyor, E.O. & K, Audu T.O., 2021. "Component distribution associated with phase separation and purification of tropical almond biodiesel at different temperatures," Renewable Energy, Elsevier, vol. 165(P1), pages 67-76.
    18. Yin, Xiulian & Ma, Haile & You, Qinghong & Wang, Zhenbin & Chang, Jinke, 2012. "Comparison of four different enhancing methods for preparing biodiesel through transesterification of sunflower oil," Applied Energy, Elsevier, vol. 91(1), pages 320-325.
    19. Panchal, Balaji & Bian, Kai & Chang, Tao & Zhu, Zheng & Wang, Jinxi & Qin, Shenjun & Zhao, Cunliang & Sun, Yuzhuang, 2021. "Synthesis of Generation-2 polyamidoamine based ionic liquid: Efficient dendrimer based catalytic green fuel production from yellow grease," Energy, Elsevier, vol. 219(C).
    20. Panneerselvam, N. & Murugesan, A. & Vijayakumar, C. & Kumaravel, A. & Subramaniam, D. & Avinash, A., 2015. "Effects of injection timing on bio-diesel fuelled engine characteristics—An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 17-31.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:60:y:2013:i:c:p:481-488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.