IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v55y2013icp392-403.html
   My bibliography  Save this article

Energy balance and greenhouse gas emissions of biodiesel production from oil derived from wastewater and wastewater sludge

Author

Listed:
  • Zhang, Xiaolei
  • Yan, Song
  • Tyagi, Rajeshwar D.
  • Surampalli, Rao Y.

Abstract

It has been recognized that oils derived from microorganism and wastewater sludge are comparable replacements of traditional biodiesel production feedstock, which is energy intensive and costly. Energy balance and greenhouse gas (GHG) emissions are essential factors to assess the feasibility of the production. This study evaluated the energy balance and GHG emissions of biodiesel production from microbial and wastewater sludge oil. The results show that energy balance and GHG emissions of biodiesel produced from microbial oil are significantly impacted by the cultivation methods and carbon source. For phototrophic microorganism (microalgae), open pond system gives 3.6 GJ higher energy gain than photo bioreactor system in per tonne biodiesel produced. For heterotrophic microorganisms, the energy balance depends on the type of carbon source. Three carbon sources including starch, cellulose, and starch industry wastewater (SIW) used in this study showed that utilization of SIW as carbon source provided the most favorable energy balance. When oil extracted from municipal sludge is used for biodiesel production, the energy gain is up to 29.7 GJ per tonne biodiesel produced, which is higher than the energy gain per tonne of biodiesel produced from SIW cultivated microbes. GHG emissions study shows that biodiesel production from microbes or sludge oil is a net carbon dioxide capture process except when starch is used as raw material for microbial oil production, and the highest capture is around 40 tonnes carbon dioxide per tonne of biodiesel produced.

Suggested Citation

  • Zhang, Xiaolei & Yan, Song & Tyagi, Rajeshwar D. & Surampalli, Rao Y., 2013. "Energy balance and greenhouse gas emissions of biodiesel production from oil derived from wastewater and wastewater sludge," Renewable Energy, Elsevier, vol. 55(C), pages 392-403.
  • Handle: RePEc:eee:renene:v:55:y:2013:i:c:p:392-403
    DOI: 10.1016/j.renene.2012.12.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113000086
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.12.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thamsiriroj, T. & Murphy, J.D., 2009. "Is it better to import palm oil from Thailand to produce biodiesel in Ireland than to produce biodiesel from indigenous Irish rape seed?," Applied Energy, Elsevier, vol. 86(5), pages 595-604, May.
    2. Yáñez Angarita, Edgar Eduardo & Silva Lora, Electo Eduardo & da Costa, Rosélis Ester & Torres, Ednildo Andrade, 2009. "The energy balance in the Palm Oil-Derived Methyl Ester (PME) life cycle for the cases in Brazil and Colombia," Renewable Energy, Elsevier, vol. 34(12), pages 2905-2913.
    3. de Souza, Simone Pereira & Pacca, Sergio & de Ávila, Márcio Turra & Borges, José Luiz B., 2010. "Greenhouse gas emissions and energy balance of palm oil biofuel," Renewable Energy, Elsevier, vol. 35(11), pages 2552-2561.
    4. Meng, Xin & Yang, Jianming & Xu, Xin & Zhang, Lei & Nie, Qingjuan & Xian, Mo, 2009. "Biodiesel production from oleaginous microorganisms," Renewable Energy, Elsevier, vol. 34(1), pages 1-5.
    5. Thamsiriroj, T. & Murphy, J.D., 2011. "The impact of the life cycle analysis methodology on whether biodiesel produced from residues can meet the EU sustainability criteria for biofuel facilities constructed after 2017," Renewable Energy, Elsevier, vol. 36(1), pages 50-63.
    6. Janulis, P., 2004. "Reduction of energy consumption in biodiesel fuel life cycle," Renewable Energy, Elsevier, vol. 29(6), pages 861-871.
    7. Chen, H. & Chen, G.Q., 2011. "Energy cost of rapeseed-based biodiesel as alternative energy in China," Renewable Energy, Elsevier, vol. 36(5), pages 1374-1378.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xiaolei & Yan, Song & Tyagi, Rajeshwar D. & Surampalli, RaoY. & Valéro, Jose R., 2014. "Wastewater sludge as raw material for microbial oils production," Applied Energy, Elsevier, vol. 135(C), pages 192-201.
    2. Chen, Jiaxin & Zhang, Xiaolei & Tyagi, Rajeshwar Dayal, 2021. "Impact of nitrogen on the industrial feasibility of biodiesel production from lipid accumulated in oleaginous yeast with wastewater sludge and crude glycerol," Energy, Elsevier, vol. 217(C).
    3. Selvakumar, P. & Arunagiri, A. & Sivashanmugam, P., 2019. "Thermo-sonic assisted enzymatic pre-treatment of sludge biomass as potential feedstock for oleaginous yeast cultivation to produce biodiesel," Renewable Energy, Elsevier, vol. 139(C), pages 1400-1411.
    4. Chen, Jiaxin & Li, Ji & Dong, Wenyi & Zhang, Xiaolei & Tyagi, Rajeshwar D. & Drogui, Patrick & Surampalli, Rao Y., 2018. "The potential of microalgae in biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 336-346.
    5. Severo, Ihana Aguiar & Siqueira, Stefania Fortes & Deprá, Mariany Costa & Maroneze, Mariana Manzoni & Zepka, Leila Queiroz & Jacob-Lopes, Eduardo, 2019. "Biodiesel facilities: What can we address to make biorefineries commercially competitive?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 686-705.
    6. Bet-Moushoul, Elsie & Farhadi, Khalil & Mansourpanah, Yaghoub & Molaie, Rahim & Forough, Mehrdad & Nikbakht, Ali Mohammad, 2016. "Development of novel Ag/bauxite nanocomposite as a heterogeneous catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 92(C), pages 12-21.
    7. Gourich, Wail & Chan, Eng-Seng & Ng, Wei Zhe & Obon, Aaron Anthony & Maran, Kireshwen & Ong, Yi Hui & Lee, Chin Loong & Tan, Jully & Song, Cher Pin, 2022. "Life cycle benefits of enzymatic biodiesel co-produced in palm oil mills from sludge palm oil as renewable fuel for rural electrification," Applied Energy, Elsevier, vol. 325(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kathrin Sunde & Andreas Brekke & Birger Solberg, 2011. "Environmental Impacts and Costs of Hydrotreated Vegetable Oils, Transesterified Lipids and Woody BTL—A Review," Energies, MDPI, vol. 4(6), pages 1-33, May.
    2. Rajaeifar, Mohammad Ali & Akram, Asadolah & Ghobadian, Barat & Rafiee, Shahin & Heidari, Mohammad Davoud, 2014. "Energy-economic life cycle assessment (LCA) and greenhouse gas emissions analysis of olive oil production in Iran," Energy, Elsevier, vol. 66(C), pages 139-149.
    3. Dufour, Javier & Iribarren, Diego, 2012. "Life cycle assessment of biodiesel production from free fatty acid-rich wastes," Renewable Energy, Elsevier, vol. 38(1), pages 155-162.
    4. Castanheira, Érica Geraldes & Acevedo, Helmer & Freire, Fausto, 2014. "Greenhouse gas intensity of palm oil produced in Colombia addressing alternative land use change and fertilization scenarios," Applied Energy, Elsevier, vol. 114(C), pages 958-967.
    5. Wiraditma Prananta & Ida Kubiszewski, 2021. "Assessment of Indonesia’s Future Renewable Energy Plan: A Meta-Analysis of Biofuel Energy Return on Investment (EROI)," Energies, MDPI, vol. 14(10), pages 1-15, May.
    6. Cho, Hyun Jun & Kim, Jin-Kuk & Ahmed, Faisal & Yeo, Yeong-Koo, 2013. "Life-cycle greenhouse gas emissions and energy balances of a biodiesel production from palm fatty acid distillate (PFAD)," Applied Energy, Elsevier, vol. 111(C), pages 479-488.
    7. Polprasert, Chongchin & Patthanaissaranukool, Withida & Englande, Andrew J., 2015. "A choice between RBD (refined, bleached, and deodorized) palm olein and palm methyl ester productions from carbon movement categorization," Energy, Elsevier, vol. 88(C), pages 610-620.
    8. Dijkman, T.J. & Benders, R.M.J., 2010. "Comparison of renewable fuels based on their land use using energy densities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3148-3155, December.
    9. Milazzo, M.F. & Spina, F. & Vinci, A. & Espro, C. & Bart, J.C.J., 2013. "Brassica biodiesels: Past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 350-389.
    10. Rodrigues, Thiago Oliveira & Caldeira-Pires, Armando & Luz, Sandra & Frate, Claudio Albuquerque, 2014. "GHG balance of crude palm oil for biodiesel production in the northern region of Brazil," Renewable Energy, Elsevier, vol. 62(C), pages 516-521.
    11. Carneiro, Maria Luisa N.M. & Pradelle, Florian & Braga, Sergio L. & Gomes, Marcos Sebastião P. & Martins, Ana Rosa F.A. & Turkovics, Franck & Pradelle, Renata N.C., 2017. "Potential of biofuels from algae: Comparison with fossil fuels, ethanol and biodiesel in Europe and Brazil through life cycle assessment (LCA)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 632-653.
    12. Rajaeifar, Mohammad Ali & Akram, Asadolah & Ghobadian, Barat & Rafiee, Shahin & Heijungs, Reinout & Tabatabaei, Meisam, 2016. "Environmental impact assessment of olive pomace oil biodiesel production and consumption: A comparative lifecycle assessment," Energy, Elsevier, vol. 106(C), pages 87-102.
    13. Papong, Seksan & Chom-In, Tassaneewan & Noksa-nga, Soottiwan & Malakul, Pomthong, 2010. "Life cycle energy efficiency and potentials of biodiesel production from palm oil in Thailand," Energy Policy, Elsevier, vol. 38(1), pages 226-233, January.
    14. de Souza, Simone Pereira & Pacca, Sergio & de Ávila, Márcio Turra & Borges, José Luiz B., 2010. "Greenhouse gas emissions and energy balance of palm oil biofuel," Renewable Energy, Elsevier, vol. 35(11), pages 2552-2561.
    15. Egle Gusciute & Ger Devlin & Fionnuala Murphy & Kevin McDonnell, 2014. "Transport sector in Ireland: can 2020 national policy targets drive indigenous biofuel production to success?," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(3), pages 310-322, May.
    16. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    17. Murphy, Fionnuala & Devlin, Ger & Deverell, Rory & McDonnell, Kevin, 2014. "Potential to increase indigenous biodiesel production to help meet 2020 targets – An EU perspective with a focus on Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 154-170.
    18. Lin, Lin & Cunshan, Zhou & Vittayapadung, Saritporn & Xiangqian, Shen & Mingdong, Dong, 2011. "Opportunities and challenges for biodiesel fuel," Applied Energy, Elsevier, vol. 88(4), pages 1020-1031, April.
    19. Malça, João & Freire, Fausto, 2011. "Life-cycle studies of biodiesel in Europe: A review addressing the variability of results and modeling issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 338-351, January.
    20. Avinash, A. & Subramaniam, D. & Murugesan, A., 2014. "Bio-diesel—A global scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 517-527.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:55:y:2013:i:c:p:392-403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.