IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v35y2014icp154-170.html
   My bibliography  Save this article

Potential to increase indigenous biodiesel production to help meet 2020 targets – An EU perspective with a focus on Ireland

Author

Listed:
  • Murphy, Fionnuala
  • Devlin, Ger
  • Deverell, Rory
  • McDonnell, Kevin

Abstract

The biofuels penetration rate target in Ireland for 2013 is 6% by volume. In 2012 the fuel blend reached 3%, with approximately 70 million litres of biodiesel and 56 million litres of ethanol blended with diesel and gasoline respectively. For January and February 2013, the blend rate had only reached 2.7%. The target of 10% by 2020 remains which equates to approximately 420 million litres. Achieving the biofuels target would require 345ktoe by 2020 (14,400TJ). Utilising the indigenous biofuels outlined in this paper leaves a shortfall of approximately 12,000TJ or 350 million litres (achieving 17% of the 10% target) that must be either be imported or met by other renewables. 70% of indigenous production from one biodiesel plant is currently from TME and UCOME. If this remains for 2020 then only 30% remains equating to approximately 10 million litres indigenous production for a second biodiesel plant (30% of 21+13 million litres) which has planned capacity of 40 million litres (36,000t). In terms of the EU biofuels sustainability criteria, up to 2017, a 35% GHG emissions reduction is required compared to fossil fuels. From 2017 onwards, a 50% GHG reduction is required for existing installations and a 60% reduction for new installations.

Suggested Citation

  • Murphy, Fionnuala & Devlin, Ger & Deverell, Rory & McDonnell, Kevin, 2014. "Potential to increase indigenous biodiesel production to help meet 2020 targets – An EU perspective with a focus on Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 154-170.
  • Handle: RePEc:eee:rensus:v:35:y:2014:i:c:p:154-170
    DOI: 10.1016/j.rser.2014.03.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211400207X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.03.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thamsiriroj, T. & Murphy, J.D., 2009. "Is it better to import palm oil from Thailand to produce biodiesel in Ireland than to produce biodiesel from indigenous Irish rape seed?," Applied Energy, Elsevier, vol. 86(5), pages 595-604, May.
    2. Singh, Anoop & Smyth, Beatrice M. & Murphy, Jerry D., 2010. "A biofuel strategy for Ireland with an emphasis on production of biomethane and minimization of land-take," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 277-288, January.
    3. Cao, Leichang & Wang, Jieni & Liu, Kuojin & Han, Sheng, 2014. "Ethyl acetoacetate: A potential bio-based diluent for improving the cold flow properties of biodiesel from waste cooking oil," Applied Energy, Elsevier, vol. 114(C), pages 18-21.
    4. Thamsiriroj, T. & Murphy, J.D., 2011. "The impact of the life cycle analysis methodology on whether biodiesel produced from residues can meet the EU sustainability criteria for biofuel facilities constructed after 2017," Renewable Energy, Elsevier, vol. 36(1), pages 50-63.
    5. Christopher, Lew P. & Hemanathan Kumar, & Zambare, Vasudeo P., 2014. "Enzymatic biodiesel: Challenges and opportunities," Applied Energy, Elsevier, vol. 119(C), pages 497-520.
    6. Alptekin, Ertan & Canakci, Mustafa, 2008. "Determination of the density and the viscosities of biodiesel–diesel fuel blends," Renewable Energy, Elsevier, vol. 33(12), pages 2623-2630.
    7. Yaakob, Zahira & Mohammad, Masita & Alherbawi, Mohammad & Alam, Zahangir & Sopian, Kamaruzaman, 2013. "Overview of the production of biodiesel from Waste cooking oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 184-193.
    8. Meher, L.C. & Vidya Sagar, D. & Naik, S.N., 2006. "Technical aspects of biodiesel production by transesterification--a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(3), pages 248-268, June.
    9. Serrano, Marta & Oliveros, Rubén & Sánchez, Marcos & Moraschini, Andrea & Martínez, Mercedes & Aracil, José, 2014. "Influence of blending vegetable oil methyl esters on biodiesel fuel properties: Oxidative stability and cold flow properties," Energy, Elsevier, vol. 65(C), pages 109-115.
    10. Enweremadu, C.C. & Mbarawa, M.M., 2009. "Technical aspects of production and analysis of biodiesel from used cooking oil--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2205-2224, December.
    11. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2012. "Production of biodiesel using high free fatty acid feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3275-3285.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pourzolfaghar, Hamed & Abnisa, Faisal & Daud, Wan Mohd Ashri Wan & Aroua, Mohamed Kheireddine, 2016. "A review of the enzymatic hydroesterification process for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 245-257.
    2. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    3. Chakraborty, Rajat & Gupta, Abhishek.K. & Chowdhury, Ratul, 2014. "Conversion of slaughterhouse and poultry farm animal fats and wastes to biodiesel: Parametric sensitivity and fuel quality assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 120-134.
    4. Thamsiriroj, Thanasit & Murphy, Jerry D., 2011. "A critical review of the applicability of biodiesel and grass biomethane as biofuels to satisfy both biofuel targets and sustainability criteria," Applied Energy, Elsevier, vol. 88(4), pages 1008-1019, April.
    5. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    6. Sierra-Cantor, Jonathan Fabián & Guerrero-Fajardo, Carlos Alberto, 2017. "Methods for improving the cold flow properties of biodiesel with high saturated fatty acids content: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 774-790.
    7. Suhaiza Zailani & Mohammad Iranmanesh & Behzad Foroughi & Kwangyong Kim & Sunghyup Sean Hyun, 2020. "Effects of supply chain practices, integration and closed-loop supply chain activities on cost-containment of biodiesel," Review of Managerial Science, Springer, vol. 14(6), pages 1299-1319, December.
    8. Egle Gusciute & Ger Devlin & Fionnuala Murphy & Kevin McDonnell, 2014. "Transport sector in Ireland: can 2020 national policy targets drive indigenous biofuel production to success?," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(3), pages 310-322, May.
    9. Zhang, Xiaolei & Yan, Song & Tyagi, Rajeshwar D. & Surampalli, RaoY. & Valéro, Jose R., 2014. "Wastewater sludge as raw material for microbial oils production," Applied Energy, Elsevier, vol. 135(C), pages 192-201.
    10. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    11. Mandolesi de Araújo, Carlos Daniel & de Andrade, Claudia Cristina & de Souza e Silva, Erika & Dupas, Francisco Antonio, 2013. "Biodiesel production from used cooking oil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 445-452.
    12. Mohammad Anwar & Mohammad G. Rasul & Nanjappa Ashwath & Md Mofijur Rahman, 2018. "Optimisation of Second-Generation Biodiesel Production from Australian Native Stone Fruit Oil Using Response Surface Method," Energies, MDPI, vol. 11(10), pages 1-18, September.
    13. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    14. Renas Hasan Saeed Saeed & Youssef Kassem & Hüseyin Çamur, 2019. "Effect of Biodiesel Mixture Derived from Waste Frying-Corn, Frying-Canola-Corn and Canola-Corn Cooking Oils with Various ‎Ages on Physicochemical Properties," Energies, MDPI, vol. 12(19), pages 1-26, September.
    15. Cédric Decarpigny & Abdulhadi Aljawish & Cédric His & Bertrand Fertin & Muriel Bigan & Pascal Dhulster & Michel Millares & Rénato Froidevaux, 2022. "Bioprocesses for the Biodiesel Production from Waste Oils and Valorization of Glycerol," Energies, MDPI, vol. 15(9), pages 1-30, May.
    16. Banković-Ilić, Ivana B. & Stamenković, Olivera S. & Veljković, Vlada B., 2012. "Biodiesel production from non-edible plant oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3621-3647.
    17. Yusuff, Adeyinka S. & Bhonsle, Aman K. & Bangwal, Dinesh P. & Atray, Neeraj, 2021. "Development of a barium-modified zeolite catalyst for biodiesel production from waste frying oil: Process optimization by design of experiment," Renewable Energy, Elsevier, vol. 177(C), pages 1253-1264.
    18. Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Kalogirou, Soteris A. & Gupta, Vijai Kumar & Park, Young-Kwon & Fallahi, Alireza & Sulaiman, Alawi & Ranjbari, Meisam & Rahnama, Hassan & Aghbashl, 2022. "Environmental life cycle assessment of biodiesel production from waste cooking oil: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    19. Balat, Mustafa & Balat, Havva, 2010. "Progress in biodiesel processing," Applied Energy, Elsevier, vol. 87(6), pages 1815-1835, June.
    20. Uzun, Başak Burcu & Kılıç, Murat & Özbay, Nurgül & Pütün, Ayşe E. & Pütün, Ersan, 2012. "Biodiesel production from waste frying oils: Optimization of reaction parameters and determination of fuel properties," Energy, Elsevier, vol. 44(1), pages 347-351.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:35:y:2014:i:c:p:154-170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.