IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i1p50-63.html
   My bibliography  Save this article

The impact of the life cycle analysis methodology on whether biodiesel produced from residues can meet the EU sustainability criteria for biofuel facilities constructed after 2017

Author

Listed:
  • Thamsiriroj, T.
  • Murphy, J.D.

Abstract

This paper considers biodiesel production from residues; tallow and used cooking oil (UCO). The tallow system is more complex involving two processes. The first process is rendering in which tallow (animal fat) and Meat and Bone Meal (MBM) are produced from the slaughter of cattle. MBM is assumed as a thermal energy source for cement manufacture and thus is not used for biodiesel production. The second process is biodiesel production from tallow. Three methodologies are employed to examine sustainability of the biodiesel. The no allocation approach assigns all the parasitic demands to the tallow; thus all energies required to make both MBM and tallow are associated with the tallow biodiesel. The resulting energy balance is negative. The substitution approach allocates the energy in MBM (used to produce cement) to tallow biodiesel. This results in the net energy being greater than the gross energy. The allocation by energy content method divides the parasitic demands of the rendering process between tallow and MBM by energy content. The parasitic demands of the biodiesel process are divided by energy content of the biodiesel, glycerol and K-fertiliser. For tallow biodiesel this yielded a net energy value of 38.6% of gross energy. The same method generated a net energy value of 67% for UCO biodiesel. More importantly the recommended method (allocation by energy content) generated a value of 54% greenhouse gas (GHG) emission savings for tallow and a value of 69% for UCO. Plants commencing after 2017, need to have a 60% GHG emission savings, to be considered sustainable. Thus a facility treating both feedstocks would need to treat a maximum of 60% tallow to be considered sustainable after 2017.

Suggested Citation

  • Thamsiriroj, T. & Murphy, J.D., 2011. "The impact of the life cycle analysis methodology on whether biodiesel produced from residues can meet the EU sustainability criteria for biofuel facilities constructed after 2017," Renewable Energy, Elsevier, vol. 36(1), pages 50-63.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:1:p:50-63
    DOI: 10.1016/j.renene.2010.05.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110002521
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.05.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Murphy, J.D. & McCarthy, K., 2005. "Ethanol production from energy crops and wastes for use as a transport fuel in Ireland," Applied Energy, Elsevier, vol. 82(2), pages 148-166, October.
    2. Thamsiriroj, T. & Murphy, J.D., 2009. "Is it better to import palm oil from Thailand to produce biodiesel in Ireland than to produce biodiesel from indigenous Irish rape seed?," Applied Energy, Elsevier, vol. 86(5), pages 595-604, May.
    3. Smyth, Beatrice M. & Murphy, Jerry D. & O'Brien, Catherine M., 2009. "What is the energy balance of grass biomethane in Ireland and other temperate northern European climates?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2349-2360, December.
    4. Murphy, J. D. & McKeogh, E. & Kiely, G., 2004. "Technical/economic/environmental analysis of biogas utilisation," Applied Energy, Elsevier, vol. 77(4), pages 407-427, April.
    5. Murphy, J.D. & McCarthy, K., 2005. "The optimal production of biogas for use as a transport fuel in Ireland," Renewable Energy, Elsevier, vol. 30(14), pages 2111-2127.
    6. Murphy, J.D. & McKeogh, E., 2006. "The benefits of integrated treatment of wastes for the production of energy," Energy, Elsevier, vol. 31(2), pages 294-310.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Egle Gusciute & Ger Devlin & Fionnuala Murphy & Kevin McDonnell, 2014. "Transport sector in Ireland: can 2020 national policy targets drive indigenous biofuel production to success?," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(3), pages 310-322, May.
    2. Dufour, Javier & Iribarren, Diego, 2012. "Life cycle assessment of biodiesel production from free fatty acid-rich wastes," Renewable Energy, Elsevier, vol. 38(1), pages 155-162.
    3. Iribarren, Diego & Susmozas, Ana & Dufour, Javier, 2013. "Life-cycle assessment of Fischer–Tropsch products from biosyngas," Renewable Energy, Elsevier, vol. 59(C), pages 229-236.
    4. Fierro, Julio & Gómez, Xiomar & Murphy, Jerry D., 2014. "What is the resource of second generation gaseous transport biofuels based on pig slurries in Spain?," Applied Energy, Elsevier, vol. 114(C), pages 783-789.
    5. Caldeira, Carla & Queirós, João & Noshadravan, Arash & Freire, Fausto, 2016. "Incorporating uncertainty in the life cycle assessment of biodiesel from waste cooking oil addressing different collection systems," Resources, Conservation & Recycling, Elsevier, vol. 112(C), pages 83-92.
    6. Murphy, Fionnuala & Devlin, Ger & Deverell, Rory & McDonnell, Kevin, 2014. "Potential to increase indigenous biodiesel production to help meet 2020 targets – An EU perspective with a focus on Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 154-170.
    7. Liao, Wenjie & Heijungs, Reinout & Huppes, Gjalt, 2011. "Is bioethanol a sustainable energy source? An energy-, exergy-, and emergy-based thermodynamic system analysis," Renewable Energy, Elsevier, vol. 36(12), pages 3479-3487.
    8. Kathrin Sunde & Andreas Brekke & Birger Solberg, 2011. "Environmental Impacts and Costs of Hydrotreated Vegetable Oils, Transesterified Lipids and Woody BTL—A Review," Energies, MDPI, vol. 4(6), pages 1-33, May.
    9. Russo, D. & Dassisti, M. & Lawlor, V. & Olabi, A.G., 2012. "State of the art of biofuels from pure plant oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4056-4070.
    10. Zhang, Xiaolei & Yan, Song & Tyagi, Rajeshwar D. & Surampalli, Rao Y., 2013. "Energy balance and greenhouse gas emissions of biodiesel production from oil derived from wastewater and wastewater sludge," Renewable Energy, Elsevier, vol. 55(C), pages 392-403.
    11. Faleh, Nahla & Khila, Zouhour & Wahada, Zeineb & Pons, Marie-Noëlle & Houas, Ammar & Hajjaji, Noureddine, 2018. "Exergo-environmental life cycle assessment of biodiesel production from mutton tallow transesterification," Renewable Energy, Elsevier, vol. 127(C), pages 74-83.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Anoop & Smyth, Beatrice M. & Murphy, Jerry D., 2010. "A biofuel strategy for Ireland with an emphasis on production of biomethane and minimization of land-take," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 277-288, January.
    2. Browne, James & Nizami, Abdul-Sattar & Thamsiriroj, T & Murphy, Jerry D., 2011. "Assessing the cost of biofuel production with increasing penetration of the transport fuel market: A case study of gaseous biomethane in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4537-4547.
    3. Egle Gusciute & Ger Devlin & Fionnuala Murphy & Kevin McDonnell, 2014. "Transport sector in Ireland: can 2020 national policy targets drive indigenous biofuel production to success?," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(3), pages 310-322, May.
    4. Fierro, Julio & Gómez, Xiomar & Murphy, Jerry D., 2014. "What is the resource of second generation gaseous transport biofuels based on pig slurries in Spain?," Applied Energy, Elsevier, vol. 114(C), pages 783-789.
    5. Murphy, J.D. & Power, N., 2009. "Technical and economic analysis of biogas production in Ireland utilising three different crop rotations," Applied Energy, Elsevier, vol. 86(1), pages 25-36, January.
    6. Padi, Richard Kingsley & Douglas, Sean & Murphy, Fionnuala, 2023. "Techno-economic potentials of integrating decentralised biomethane production systems into existing natural gas grids," Energy, Elsevier, vol. 283(C).
    7. Thamsiriroj, Thanasit & Murphy, Jerry D., 2011. "A critical review of the applicability of biodiesel and grass biomethane as biofuels to satisfy both biofuel targets and sustainability criteria," Applied Energy, Elsevier, vol. 88(4), pages 1008-1019, April.
    8. Goulding, D. & Power, N., 2013. "Which is the preferable biogas utilisation technology for anaerobic digestion of agricultural crops in Ireland: Biogas to CHP or biomethane as a transport fuel?," Renewable Energy, Elsevier, vol. 53(C), pages 121-131.
    9. Lindfeldt, Erik G. & Saxe, Maria & Magnusson, Mimmi & Mohseni, Farzad, 2010. "Strategies for a road transport system based on renewable resources - The case of an import-independent Sweden in 2025," Applied Energy, Elsevier, vol. 87(6), pages 1836-1845, June.
    10. Vo, Truc T.Q. & Xia, Ao & Wall, David M. & Murphy, Jerry D., 2017. "Use of surplus wind electricity in Ireland to produce compressed renewable gaseous transport fuel through biological power to gas systems," Renewable Energy, Elsevier, vol. 105(C), pages 495-504.
    11. Cong, Rong-Gang & Caro, Dario & Thomsen, Marianne, 2017. "Is it beneficial to use biogas in the Danish transport sector?–An environmental-economic analysis," MPRA Paper 112291, University Library of Munich, Germany.
    12. Murphy, Jerry D. & Browne, James & Allen, Eoin & Gallagher, Cathal, 2013. "The resource of biomethane, produced via biological, thermal and electrical routes, as a transport biofuel," Renewable Energy, Elsevier, vol. 55(C), pages 474-479.
    13. Smyth, Beatrice M. & Smyth, Henry & Murphy, Jerry D., 2011. "Determining the regional potential for a grass biomethane industry," Applied Energy, Elsevier, vol. 88(6), pages 2037-2049, June.
    14. Daniela Szymańska & Aleksandra Lewandowska, 2015. "Biogas Power Plants in Poland—Structure, Capacity, and Spatial Distribution," Sustainability, MDPI, vol. 7(12), pages 1-19, December.
    15. Gómez, Antonio & Zubizarreta, Javier & Rodrigues, Marcos & Dopazo, César & Fueyo, Norberto, 2010. "Potential and cost of electricity generation from human and animal waste in Spain," Renewable Energy, Elsevier, vol. 35(2), pages 498-505.
    16. Asam, Zaki-ul-Zaman & Poulsen, Tjalfe Gorm & Nizami, Abdul-Sattar & Rafique, Rashad & Kiely, Ger & Murphy, Jerry D., 2011. "How can we improve biomethane production per unit of feedstock in biogas plants?," Applied Energy, Elsevier, vol. 88(6), pages 2013-2018, June.
    17. Smyth, Beatrice M. & Murphy, Jerry D. & O'Brien, Catherine M., 2009. "What is the energy balance of grass biomethane in Ireland and other temperate northern European climates?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2349-2360, December.
    18. Tabassum, Muhammad Rizwan & Xia, Ao & Murphy, Jerry D., 2017. "Potential of seaweed as a feedstock for renewable gaseous fuel production in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 136-146.
    19. Singh, Anoop & Nizami, Abdul-Sattar & Korres, Nicholas E. & Murphy, Jerry D., 2011. "The effect of reactor design on the sustainability of grass biomethane," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1567-1574, April.
    20. Czyrnek-Delêtre, Magdalena M. & Smyth, Beatrice M. & Murphy, Jerry D., 2017. "Beyond carbon and energy: The challenge in setting guidelines for life cycle assessment of biofuel systems," Renewable Energy, Elsevier, vol. 105(C), pages 436-448.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:1:p:50-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.