IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v111y2013icp479-488.html
   My bibliography  Save this article

Life-cycle greenhouse gas emissions and energy balances of a biodiesel production from palm fatty acid distillate (PFAD)

Author

Listed:
  • Cho, Hyun Jun
  • Kim, Jin-Kuk
  • Ahmed, Faisal
  • Yeo, Yeong-Koo

Abstract

Life-cycle greenhouse gas (GHG) emissions and net energy ratio (NER) have been evaluated for the production of palm biodiesel from palm fatty acid distillate (PFAD) which is a by-product in the refining process. For the case that PFAD is regarded as a processing residue, GHG emissions associated with biodiesel production in the considered process is 86.5% less than that of fossil diesel, which surpasses even the threshold of year 2018 of the Renewable Energy Directive (RED) of the European Union (EU). In the present study, it is also shown that the value of the NER is 3.23, which means that the energy yield from palm methyl ester (PME) production from PFAD is around three times larger than the input of fossil energy in the production. In conclusion, the palm biodiesel from PFAD can be one of various alternatives to the ‘conventional’ palm biodiesel which is made of refined palm oil, and sustainability issues and ethical problems can be considerably minimized with the strategic utilization of palm biodiesel produced from PFAD.

Suggested Citation

  • Cho, Hyun Jun & Kim, Jin-Kuk & Ahmed, Faisal & Yeo, Yeong-Koo, 2013. "Life-cycle greenhouse gas emissions and energy balances of a biodiesel production from palm fatty acid distillate (PFAD)," Applied Energy, Elsevier, vol. 111(C), pages 479-488.
  • Handle: RePEc:eee:appene:v:111:y:2013:i:c:p:479-488
    DOI: 10.1016/j.apenergy.2013.05.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191300439X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.05.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoshihito Shirai & Minato Wakisaka & Shahrakbah Yacob & Mohd Ali Hassan & Shin’ichi Suzuki, 2003. "Reduction of Methane Released from Palm Oil Mill Lagoon in Malaysia and Its Countermeasures," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 8(3), pages 237-252, September.
    2. Koponen, Kati & Soimakallio, Sampo & Tsupari, Eemeli & Thun, Rabbe & Antikainen, Riina, 2013. "GHG emission performance of various liquid transportation biofuels in Finland in accordance with the EU sustainability criteria," Applied Energy, Elsevier, vol. 102(C), pages 440-448.
    3. Thamsiriroj, T. & Murphy, J.D., 2009. "Is it better to import palm oil from Thailand to produce biodiesel in Ireland than to produce biodiesel from indigenous Irish rape seed?," Applied Energy, Elsevier, vol. 86(5), pages 595-604, May.
    4. Gernot Pehnelt & Christoph Vietze, 2012. "Uncertainties about the GHG Emissions Saving of Rapeseed Biodiesel," Jena Economics Research Papers 2012-039, Friedrich-Schiller-University Jena.
    5. Papong, Seksan & Chom-In, Tassaneewan & Noksa-nga, Soottiwan & Malakul, Pomthong, 2010. "Life cycle energy efficiency and potentials of biodiesel production from palm oil in Thailand," Energy Policy, Elsevier, vol. 38(1), pages 226-233, January.
    6. Yáñez Angarita, Edgar Eduardo & Silva Lora, Electo Eduardo & da Costa, Rosélis Ester & Torres, Ednildo Andrade, 2009. "The energy balance in the Palm Oil-Derived Methyl Ester (PME) life cycle for the cases in Brazil and Colombia," Renewable Energy, Elsevier, vol. 34(12), pages 2905-2913.
    7. Yee, Kian Fei & Tan, Kok Tat & Abdullah, Ahmad Zuhairi & Lee, Keat Teong, 2009. "Life cycle assessment of palm biodiesel: Revealing facts and benefits for sustainability," Applied Energy, Elsevier, vol. 86(Supplemen), pages 189-196, November.
    8. Ros, Jan & Nagelhout, Dick & Montfoort, Johanna, 2009. "New environmental policy for system innovation: Casus alternatives for fossil motor fuels," Applied Energy, Elsevier, vol. 86(2), pages 243-250, February.
    9. Hennecke, Anna M. & Faist, Mireille & Reinhardt, Jürgen & Junquera, Victoria & Neeft, John & Fehrenbach, Horst, 2013. "Biofuel greenhouse gas calculations under the European Renewable Energy Directive – A comparison of the BioGrace tool vs. the tool of the Roundtable on Sustainable Biofuels," Applied Energy, Elsevier, vol. 102(C), pages 55-62.
    10. Góralczyk, Malgorzata, 2003. "Life-cycle assessment in the renewable energy sector," Applied Energy, Elsevier, vol. 75(3-4), pages 205-211, July.
    11. Gernot Pehnelt & Christoph Vietze, 2009. "European Policies towards Palm Oil - Sorting Out some Facts," Jena Economics Research Papers 2009-086, Friedrich-Schiller-University Jena.
    12. de Souza, Simone Pereira & Pacca, Sergio & de Ávila, Márcio Turra & Borges, José Luiz B., 2010. "Greenhouse gas emissions and energy balance of palm oil biofuel," Renewable Energy, Elsevier, vol. 35(11), pages 2552-2561.
    13. Lubbe, Nils & Sahlin, Ullrika, 2012. "Benefits of biofuels in Sweden: A probabilistic re-assessment of the index of new cars’ climate impact," Applied Energy, Elsevier, vol. 92(C), pages 473-479.
    14. Pleanjai, Somporn & Gheewala, Shabbir H., 2009. "Full chain energy analysis of biodiesel production from palm oil in Thailand," Applied Energy, Elsevier, vol. 86(Supplemen), pages 209-214, November.
    15. Gernot Pehnelt & Christoph Vietze, 2011. "Recalculating Default Values for Palm Oil," Jena Economics Research Papers 2011-037, Friedrich-Schiller-University Jena.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Somnuk, Krit & Soysuwan, Natthapon & Prateepchaikul, Gumpon, 2019. "Continuous process for biodiesel production from palm fatty acid distillate (PFAD) using helical static mixers as reactors," Renewable Energy, Elsevier, vol. 131(C), pages 100-110.
    2. Xu, H. & Lee, U. & Wang, M., 2020. "Life-cycle energy use and greenhouse gas emissions of palm fatty acid distillate derived renewable diesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Han, Xiaoye & Yang, Zhenyi & Wang, Meiping & Tjong, Jimi & Zheng, Ming, 2017. "Clean combustion of n-butanol as a next generation biofuel for diesel engines," Applied Energy, Elsevier, vol. 198(C), pages 347-359.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Castanheira, Érica Geraldes & Acevedo, Helmer & Freire, Fausto, 2014. "Greenhouse gas intensity of palm oil produced in Colombia addressing alternative land use change and fertilization scenarios," Applied Energy, Elsevier, vol. 114(C), pages 958-967.
    2. Wiraditma Prananta & Ida Kubiszewski, 2021. "Assessment of Indonesia’s Future Renewable Energy Plan: A Meta-Analysis of Biofuel Energy Return on Investment (EROI)," Energies, MDPI, vol. 14(10), pages 1-15, May.
    3. Polprasert, Chongchin & Patthanaissaranukool, Withida & Englande, Andrew J., 2015. "A choice between RBD (refined, bleached, and deodorized) palm olein and palm methyl ester productions from carbon movement categorization," Energy, Elsevier, vol. 88(C), pages 610-620.
    4. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    5. de Souza, Simone Pereira & Pacca, Sergio & de Ávila, Márcio Turra & Borges, José Luiz B., 2010. "Greenhouse gas emissions and energy balance of palm oil biofuel," Renewable Energy, Elsevier, vol. 35(11), pages 2552-2561.
    6. Archer, Sophie A. & Murphy, Richard J. & Steinberger-Wilckens, Robert, 2018. "Methodological analysis of palm oil biodiesel life cycle studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 694-704.
    7. Sastre, C.M. & Maletta, E. & González-Arechavala, Y. & Ciria, P. & Santos, A.M. & del Val, A. & Pérez, P. & Carrasco, J., 2014. "Centralised electricity production from winter cereals biomass grown under central-northern Spain conditions: Global warming and energy yield assessments," Applied Energy, Elsevier, vol. 114(C), pages 737-748.
    8. Achten, Wouter M.J. & Almeida, Joana & Fobelets, Vincent & Bolle, Evelien & Mathijs, Erik & Singh, Virendra P. & Tewari, Dina N. & Verchot, Louis V. & Muys, Bart, 2010. "Life cycle assessment of Jatropha biodiesel as transportation fuel in rural India," Applied Energy, Elsevier, vol. 87(12), pages 3652-3660, December.
    9. Hassan, Mohd Nor Azman & Jaramillo, Paulina & Griffin, W. Michael, 2011. "Life cycle GHG emissions from Malaysian oil palm bioenergy development: The impact on transportation sector's energy security," Energy Policy, Elsevier, vol. 39(5), pages 2615-2625, May.
    10. Pandey, Krishan K. & Pragya, Namita & Sahoo, P.K., 2011. "Life cycle assessment of small-scale high-input Jatropha biodiesel production in India," Applied Energy, Elsevier, vol. 88(12), pages 4831-4839.
    11. Rodrigues, Thiago Oliveira & Caldeira-Pires, Armando & Luz, Sandra & Frate, Claudio Albuquerque, 2014. "GHG balance of crude palm oil for biodiesel production in the northern region of Brazil," Renewable Energy, Elsevier, vol. 62(C), pages 516-521.
    12. Zhang, Long & Bai, Wuliyasu, 2021. "Sustainability of crop–based biodiesel for transportation in China: Barrier analysis and life cycle ecological footprint calculations," Technological Forecasting and Social Change, Elsevier, vol. 164(C).
    13. Zhang, Xiaolei & Yan, Song & Tyagi, Rajeshwar D. & Surampalli, Rao Y., 2013. "Energy balance and greenhouse gas emissions of biodiesel production from oil derived from wastewater and wastewater sludge," Renewable Energy, Elsevier, vol. 55(C), pages 392-403.
    14. Carneiro, Maria Luisa N.M. & Pradelle, Florian & Braga, Sergio L. & Gomes, Marcos Sebastião P. & Martins, Ana Rosa F.A. & Turkovics, Franck & Pradelle, Renata N.C., 2017. "Potential of biofuels from algae: Comparison with fossil fuels, ethanol and biodiesel in Europe and Brazil through life cycle assessment (LCA)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 632-653.
    15. Papong, Seksan & Chom-In, Tassaneewan & Noksa-nga, Soottiwan & Malakul, Pomthong, 2010. "Life cycle energy efficiency and potentials of biodiesel production from palm oil in Thailand," Energy Policy, Elsevier, vol. 38(1), pages 226-233, January.
    16. Goh, Chun Sheng & Lee, Keat Teong, 2010. "Palm-based biofuel refinery (PBR) to substitute petroleum refinery: An energy and emergy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2986-2995, December.
    17. Gernot Pehnelt & Christoph Vietze, 2012. "Uncertainties about the GHG Emissions Saving of Rapeseed Biodiesel," Jena Economics Research Papers 2012-039, Friedrich-Schiller-University Jena.
    18. Rajaeifar, Mohammad Ali & Akram, Asadolah & Ghobadian, Barat & Rafiee, Shahin & Heidari, Mohammad Davoud, 2014. "Energy-economic life cycle assessment (LCA) and greenhouse gas emissions analysis of olive oil production in Iran," Energy, Elsevier, vol. 66(C), pages 139-149.
    19. Avinash, A. & Subramaniam, D. & Murugesan, A., 2014. "Bio-diesel—A global scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 517-527.
    20. Patthanaissaranukool, Withida & Polprasert, Chongchin & Englande, Andrew J., 2013. "Potential reduction of carbon emissions from Crude Palm Oil production based on energy and carbon balances," Applied Energy, Elsevier, vol. 102(C), pages 710-717.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:111:y:2013:i:c:p:479-488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.