IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v54y2013icp227-234.html
   My bibliography  Save this article

The thermal performance of an ethanol solar still with fin plate to increase productivity

Author

Listed:
  • Panomwan Na Ayuthaya, Rattanapol
  • Namprakai, Pichai
  • Ampun, Wirut

Abstract

This article presented an indoor experiment on developing a mathematical model for predicting the productivity of an ethanol solar still of basin type. The test still contained a horizontal evaporating surface and a condensing surface inclined 14° to a horizontal. Various concentrations of ethanol–water solution were employed for this experiment. The distillation temperature range included boiling point. The collected data were used to estimate the mass-transfer coefficient and mass transfer conductance of the solar still. Accordingly, a mathematical model was developed based on the Spalding theory of convection and the Fick's law of diffusion. In order to increase the performance at the outdoor conditions, a basin solar still was integrated with a set of fin-plate fitting in the still basin for distillation of a 10%v/v alcohol solution. It was found that the productivity of the modified solar still was increased by 15.5%, compared to that of a conventional still. Moreover, the predicted still efficiency by the model could increase to 46% when a number of fins that raised an effective absorptance were increased. Condition of high concentration output and high productivity was investigated. Monthly mean productivity and efficiency of the still were found to increase with daily mean insolation.

Suggested Citation

  • Panomwan Na Ayuthaya, Rattanapol & Namprakai, Pichai & Ampun, Wirut, 2013. "The thermal performance of an ethanol solar still with fin plate to increase productivity," Renewable Energy, Elsevier, vol. 54(C), pages 227-234.
  • Handle: RePEc:eee:renene:v:54:y:2013:i:c:p:227-234
    DOI: 10.1016/j.renene.2012.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112004636
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.08.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vorayos, N. & Kiatsiriroat, T. & Vorayos, N., 2006. "Performance analysis of solar ethanol distillation," Renewable Energy, Elsevier, vol. 31(15), pages 2543-2554.
    2. Toure, Siaka & Salami, Hassan & Meukam, Pierre, 1999. "Theoritical and experimental studies of a solar still type suitable for alcoholic distillation," Renewable Energy, Elsevier, vol. 16(1), pages 739-742.
    3. Namprakai, P. & Hirunlabh, J., 2007. "Theoretical and experimental studies of an ethanol basin solar still," Energy, Elsevier, vol. 32(12), pages 2376-2384.
    4. Kiatsiriroat, T. & Bhattacharya, S.C. & Wibulswas, P., 1986. "Prediction of mass transfer rates in solar stills," Energy, Elsevier, vol. 11(9), pages 881-886.
    5. Velmurugan, V. & Deenadayalan, C.K. & Vinod, H. & Srithar, K., 2008. "Desalination of effluent using fin type solar still," Energy, Elsevier, vol. 33(11), pages 1719-1727.
    6. Namprakai, P. & Hirunlabh, J. & Kiatsiriroat, T., 1997. "Ethyl alcohol distillation in a basin solar still," Renewable Energy, Elsevier, vol. 11(2), pages 169-175.
    7. ElSherbiny, Samy M. & Fath, Hassan E.S., 1993. "Solar distillation under climatic conditions of Egypt," Renewable Energy, Elsevier, vol. 3(1), pages 61-65.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siva Ram Akkala & Ajay Kumar Kaviti, 2024. "Impact of different fins designs on performance of solar still desalination system: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 19257-19298, August.
    2. El-Sebaii, A.A. & El-Bialy, E., 2015. "Advanced designs of solar desalination systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1198-1212.
    3. Rashidi, Saman & Akar, Shima & Bovand, Masoud & Ellahi, Rahmat, 2018. "Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still," Renewable Energy, Elsevier, vol. 115(C), pages 400-410.
    4. Jani, Hardik K. & Modi, Kalpesh V., 2018. "A review on numerous means of enhancing heat transfer rate in solar-thermal based desalination devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 302-317.
    5. Fang, Shibiao & Mu, Lin & Tu, Wenrong, 2021. "Application design and assessment of a novel small-decentralized solar distillation device based on energy, exergy, exergoeconomic, and enviroeconomic parameters," Renewable Energy, Elsevier, vol. 164(C), pages 1350-1363.
    6. Muthu Manokar, A. & Kalidasa Murugavel, K. & Esakkimuthu, G., 2014. "Different parameters affecting the rate of evaporation and condensation on passive solar still – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 309-322.
    7. Rashidi, Saman & Bovand, Masoud & Rahbar, Nader & Esfahani, Javad Abolfazli, 2018. "Steps optimization and productivity enhancement in a nanofluid cascade solar still," Renewable Energy, Elsevier, vol. 118(C), pages 536-545.
    8. Shalaby, S.M., 2017. "Reverse osmosis desalination powered by photovoltaic and solar Rankine cycle power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 789-797.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Namprakai, P. & Hirunlabh, J., 2007. "Theoretical and experimental studies of an ethanol basin solar still," Energy, Elsevier, vol. 32(12), pages 2376-2384.
    2. Vorayos, N. & Kiatsiriroat, T. & Vorayos, N., 2006. "Performance analysis of solar ethanol distillation," Renewable Energy, Elsevier, vol. 31(15), pages 2543-2554.
    3. Dumka, Pankaj & Mishra, Dhananjay R., 2020. "Performance evaluation of single slope solar still augmented with the ultrasonic fogger," Energy, Elsevier, vol. 190(C).
    4. El-Sebaii, A.A. & El-Bialy, E., 2015. "Advanced designs of solar desalination systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1198-1212.
    5. Jani, Hardik K. & Modi, Kalpesh V., 2018. "A review on numerous means of enhancing heat transfer rate in solar-thermal based desalination devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 302-317.
    6. Kannan, R. & Selvaganesan, C. & Vignesh, M. & Babu, B. Ramesh & Fuentes, M. & Vivar, M. & Skryabin, I. & Srithar, K., 2014. "Solar still with vapor adsorption basin: Performance analysis," Renewable Energy, Elsevier, vol. 62(C), pages 258-264.
    7. Shalaby, S.M., 2017. "Reverse osmosis desalination powered by photovoltaic and solar Rankine cycle power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 789-797.
    8. Mohd Fazly Yusof & Mohd Remy Rozainy Mohd Arif Zainol & Andrei Victor Sandu & Ali Riahi & Nor Azazi Zakaria & Syafiq Shaharuddin & Mohd Sharizal Abdul Aziz & Norazian Mohamed Noor & Petrica Vizureanu , 2022. "Clean Water Production Enhancement through the Integration of Small-Scale Solar Stills with Solar Dish Concentrators (SDCs)—A Review," Sustainability, MDPI, vol. 14(9), pages 1-27, April.
    9. Nayi, Kuldeep H. & Modi, Kalpesh V., 2018. "Pyramid solar still: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 136-148.
    10. Kalidasa Murugavel, K. & Srithar, K., 2011. "Performance study on basin type double slope solar still with different wick materials and minimum mass of water," Renewable Energy, Elsevier, vol. 36(2), pages 612-620.
    11. Ibrahim, Ayman G.M. & Allam, Elsayed E. & Elshamarka, Salman E., 2015. "A modified basin type solar still: Experimental performance and economic study," Energy, Elsevier, vol. 93(P1), pages 335-342.
    12. M, Chandrashekara & Yadav, Avadhesh, 2017. "Water desalination system using solar heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1308-1330.
    13. Velmurugan, V. & Srithar, K., 2011. "Performance analysis of solar stills based on various factors affecting the productivity--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1294-1304, February.
    14. Siva Ram Akkala & Ajay Kumar Kaviti, 2024. "Impact of different fins designs on performance of solar still desalination system: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 19257-19298, August.
    15. Sharshir, S.W. & Elsheikh, A.H. & Peng, Guilong & Yang, Nuo & El-Samadony, M.O.A. & Kabeel, A.E., 2017. "Thermal performance and exergy analysis of solar stills – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 521-544.
    16. Suha A. Mohammed & Ali Basem & Zakaria M. Omara & Wissam H. Alawee & Hayder A. Dhahad & Fadl A. Essa & Abdekader S. Abdullah & Hasan Sh. Majdi & Iqbal Alshalal & Wan Nor Roslam Wan Isahak & Ahmed A. A, 2022. "Pyramidal Solar Stills via Hollow Cylindrical Perforated Fins, Inclined Rectangular Perforated Fins, and Nanocomposites: An Experimental Investigation," Sustainability, MDPI, vol. 14(21), pages 1-15, October.
    17. Mohaisen, H.S. & Esfahani, J.A. & Ayani, M.B., 2021. "Improvement in the performance and cost of passive solar stills using a finned-wall/built-in condenser: An experimental study," Renewable Energy, Elsevier, vol. 168(C), pages 170-180.
    18. Mohd Fazly Yusof & Mohd Remy Rozainy Mohd Arif Zainol & Ali Riahi & Nor Azazi Zakaria & Syafiq Shaharuddin & Siti Fairuz Juiani & Norazian Mohamed Noor & Mohd Hafiz Zawawi & Jazaul Ikhsan, 2022. "Investigation on the Urban Grey Water Treatment Using a Cost-Effective Solar Distillation Still," Sustainability, MDPI, vol. 14(15), pages 1-20, August.
    19. El-Sebaii, A.A. & Al-Ghamdi, A.A. & Al-Hazmi, F.S. & Faidah, Adel S., 2009. "Thermal performance of a single basin solar still with PCM as a storage medium," Applied Energy, Elsevier, vol. 86(7-8), pages 1187-1195, July.
    20. Sumol Sae-Heng Pisitsungkakarn & Pichitpon Neamyou, 2022. "Efficiency of Semi-Automatic Control Ethanol Distillation Using a Vacuum-Tube Parabolic Solar Collector," Energies, MDPI, vol. 15(13), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:54:y:2013:i:c:p:227-234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.