IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v50y2013icp214-221.html
   My bibliography  Save this article

Experimental and theoretical analysis of a dynamic test method for molten salt cavity receiver

Author

Listed:
  • Zhang, Qiangqiang
  • Li, Xin
  • Wang, Zhifeng
  • Chang, Chun
  • Liu, Hong

Abstract

Test methods for estimating the thermal performance of the molten salt receiver are a matter of ongoing concern. To date, test methods in the literature require receiver to be operated in steady state or quasi-steady state. However, the receiver is always operating in the unsteady state with ongoing changes in power absorption and flow rate. Therefore, research into dynamic test method for the molten salt cavity receiver is required. The Transfer Function Method (TFM) is a successful dynamic test method for solar collectors. In this paper, a theoretical analysis of the TFM was applied to the molten salt cavity receiver and then verified by indoor transient experiments. The TFM predicted outlet temperature of the receiver was compared with experimental data. The results showed that the TFM accurately predicted the outlet temperature trends despite some errors between predicted and measured outlet temperature. The errors may have originated from the changing flow rate. The TFM is a good candidate as a dynamic test method for the concentrated solar receiver.

Suggested Citation

  • Zhang, Qiangqiang & Li, Xin & Wang, Zhifeng & Chang, Chun & Liu, Hong, 2013. "Experimental and theoretical analysis of a dynamic test method for molten salt cavity receiver," Renewable Energy, Elsevier, vol. 50(C), pages 214-221.
  • Handle: RePEc:eee:renene:v:50:y:2013:i:c:p:214-221
    DOI: 10.1016/j.renene.2012.06.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112004053
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.06.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Minlin & Yang, Xiaoxi & Yang, Xiaoping & Ding, Jing, 2010. "Heat transfer enhancement and performance of the molten salt receiver of a solar power tower," Applied Energy, Elsevier, vol. 87(9), pages 2808-2811, September.
    2. Yang, Xiaoping & Yang, Xiaoxi & Ding, Jing & Shao, Youyuan & Fan, Hongbo, 2012. "Numerical simulation study on the heat transfer characteristics of the tube receiver of the solar thermal power tower," Applied Energy, Elsevier, vol. 90(1), pages 142-147.
    3. Li, Xin & Kong, Weiqiang & Wang, Zhifeng & Chang, Chun & Bai, Fengwu, 2010. "Thermal model and thermodynamic performance of molten salt cavity receiver," Renewable Energy, Elsevier, vol. 35(5), pages 981-988.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Min & Fan, Yilin & Luo, Lingai & Flamant, Gilles, 2015. "Fluid flow distribution optimization for minimizing the peak temperature of a tubular solar receiver," Energy, Elsevier, vol. 91(C), pages 663-677.
    2. Xu, Li & Stein, Wesley & Kim, Jin-Soo & Wang, Zhifeng, 2018. "Three-dimensional transient numerical model for the thermal performance of the solar receiver," Renewable Energy, Elsevier, vol. 120(C), pages 550-566.
    3. Wang, Di & Han, Xinrui & Li, Haoyu & Li, Xiaoli, 2023. "Dynamic simulation and parameter analysis of solar-coal hybrid power plant based on the supercritical CO2 Brayton cycle," Energy, Elsevier, vol. 272(C).
    4. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal, 2013. "A review of studies on central receiver solar thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 12-39.
    5. Chang, Zheshao & Li, Xin & Xu, Chao & Chang, Chun & Wang, Zhifeng, 2014. "Numerical simulation on the thermal performance of a solar molten salt cavity receiver," Renewable Energy, Elsevier, vol. 69(C), pages 324-335.
    6. Zhou, Hao & Li, Yawei & Zuo, Yuhang & Zhou, Mingxi & Fang, Wenfeng & Zhu, Yifan, 2021. "Thermal performance and thermal stress analysis of a 600 MWth solar cylinder external receiver," Renewable Energy, Elsevier, vol. 164(C), pages 331-345.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Qiangqiang & Li, Xin & Wang, Zhifeng & Zhang, Jinbai & El-Hefni, Baligh & Xu, Li, 2015. "Modeling and simulation of a molten salt cavity receiver with Dymola," Energy, Elsevier, vol. 93(P2), pages 1373-1384.
    2. Liao, Zhirong & Li, Xin & Xu, Chao & Chang, Chun & Wang, Zhifeng, 2014. "Allowable flux density on a solar central receiver," Renewable Energy, Elsevier, vol. 62(C), pages 747-753.
    3. Mostafavi Tehrani, S. Saeed & Taylor, Robert A., 2016. "Off-design simulation and performance of molten salt cavity receivers in solar tower plants under realistic operational modes and control strategies," Applied Energy, Elsevier, vol. 179(C), pages 698-715.
    4. Conroy, Tim & Collins, Maurice N. & Grimes, Ronan, 2020. "A review of steady-state thermal and mechanical modelling on tubular solar receivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Zhang, Li & Fang, Jiabin & Wei, Jinjia & Yang, Guidong, 2017. "Numerical investigation on the thermal performance of molten salt cavity receivers with different structures," Applied Energy, Elsevier, vol. 204(C), pages 966-978.
    6. Daabo, Ahmed M. & Mahmoud, Saad & Al-Dadah, Raya K., 2016. "The optical efficiency of three different geometries of a small scale cavity receiver for concentrated solar applications," Applied Energy, Elsevier, vol. 179(C), pages 1081-1096.
    7. Xiao, Gang & Guo, Kaikai & Luo, Zhongyang & Ni, Mingjiang & Zhang, Yanmei & Wang, Cheng, 2014. "Simulation and experimental study on a spiral solid particle solar receiver," Applied Energy, Elsevier, vol. 113(C), pages 178-188.
    8. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
    9. Yu, Qiang & Fu, Peng & Yang, Yihui & Qiao, Jiafei & Wang, Zhifeng & Zhang, Qiangqiang, 2020. "Modeling and parametric study of molten salt receiver of concentrating solar power tower plant," Energy, Elsevier, vol. 200(C).
    10. Zhang, Qiang & Cao, Donghong & Ge, Zhihua & Du, Xiaoze, 2020. "Response characteristics of external receiver for concentrated solar power to disturbance during operation," Applied Energy, Elsevier, vol. 278(C).
    11. Alhussein Albarbar & Abdullah Arar, 2019. "Performance Assessment and Improvement of Central Receivers Used for Solar Thermal Plants," Energies, MDPI, vol. 12(16), pages 1-27, August.
    12. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal, 2013. "A review of studies on central receiver solar thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 12-39.
    13. Zhou, Hao & Li, Yawei & Zuo, Yuhang & Zhou, Mingxi & Fang, Wenfeng & Zhu, Yifan, 2021. "Thermal performance and thermal stress analysis of a 600 MWth solar cylinder external receiver," Renewable Energy, Elsevier, vol. 164(C), pages 331-345.
    14. Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
    15. Zhang, Maolong & Du, Xiaoze & Pang, Liping & Xu, Chao & Yang, Lijun, 2016. "Performance of double source boiler with coal-fired and solar power tower heat for supercritical power generating unit," Energy, Elsevier, vol. 104(C), pages 64-75.
    16. Luo, Xianglong & Yi, Zhitong & Zhang, Bingjian & Mo, Songping & Wang, Chao & Song, Mengjie & Chen, Ying, 2017. "Mathematical modelling and optimization of the liquid separation condenser used in organic Rankine cycle," Applied Energy, Elsevier, vol. 185(P2), pages 1309-1323.
    17. Ma, Ning & Meng, Fugui & Hong, Wenpeng & Li, Haoran & Niu, Xiaojuan, 2023. "Thermodynamic assessment of the dry-cooling supercritical Brayton cycle in a direct-heated solar power tower plant enabled by CO2-propane mixture," Renewable Energy, Elsevier, vol. 203(C), pages 649-663.
    18. Kerme, Esa Dube & Orfi, Jamel & Fung, Alan S. & Salilih, Elias M. & Khan, Salah Ud-Din & Alshehri, Hassan & Ali, Emad & Alrasheed, Mohammed, 2020. "Energetic and exergetic performance analysis of a solar driven power, desalination and cooling poly-generation system," Energy, Elsevier, vol. 196(C).
    19. Amani, Madjid & Ghenaiet, Adel, 2020. "Novel hybridization of solar central receiver system with combined cycle power plant," Energy, Elsevier, vol. 201(C).
    20. Wang, Kun & He, Ya-Ling & Zhu, Han-Hui, 2017. "Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts," Applied Energy, Elsevier, vol. 195(C), pages 819-836.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:50:y:2013:i:c:p:214-221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.