Performance Assessment and Improvement of Central Receivers Used for Solar Thermal Plants
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Mokri, Alaeddine & Aal Ali, Mona & Emziane, Mahieddine, 2013. "Solar energy in the United Arab Emirates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 340-375.
- AlYahya, Sulaiman & Irfan, Mohammad A., 2016. "The techno-economic potential of Saudi Arabia׳s solar industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 697-702.
- Yang, Minlin & Yang, Xiaoxi & Yang, Xiaoping & Ding, Jing, 2010. "Heat transfer enhancement and performance of the molten salt receiver of a solar power tower," Applied Energy, Elsevier, vol. 87(9), pages 2808-2811, September.
- Cristina Prieto & Alfonso Rodríguez-Sánchez & F. Javier Ruiz-Cabañas & Luisa F. Cabeza, 2019. "Feasibility Study of Freeze Recovery Options in Parabolic Trough Collector Plants Working with Molten Salt as Heat Transfer Fluid," Energies, MDPI, vol. 12(12), pages 1-20, June.
- Benoit, H. & Spreafico, L. & Gauthier, D. & Flamant, G., 2016. "Review of heat transfer fluids in tube-receivers used in concentrating solar thermal systems: Properties and heat transfer coefficients," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 298-315.
- Li, Xin & Kong, Weiqiang & Wang, Zhifeng & Chang, Chun & Bai, Fengwu, 2010. "Thermal model and thermodynamic performance of molten salt cavity receiver," Renewable Energy, Elsevier, vol. 35(5), pages 981-988.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Linyuan Shang & Yanjiang Wang & Xiaogang Deng & Yuping Cao & Ping Wang & Yuhong Wang, 2019. "An Enhanced Method to Assess MPC Performance Based on Multi-Step Slow Feature Analysis," Energies, MDPI, vol. 12(19), pages 1-18, October.
- Dhikra Derbal & Abdallah Abderrezak & Seif Eddine Chehaidia & Majdi T. Amin & Mohamed I. Mosaad & Tarek A. Abdul-Fattah, 2023. "Parametric Study and Optimization of No-Blocking Heliostat Field Layout," Energies, MDPI, vol. 16(13), pages 1-21, June.
- Xue, Xue & Liu, Xiang & Zhu, Yifan & Yuan, Lei & Zhu, Ying & Jin, Kelang & Zhang, Lei & Zhou, Hao, 2023. "Numerical modeling and parametric study of the heat storage process of the 1.05 MW molten salt furnace," Energy, Elsevier, vol. 282(C).
- Alaric Christian Montenon & Rowida Meligy, 2022. "Control Strategies Applied to a Heat Transfer Loop of a Linear Fresnel Collector," Energies, MDPI, vol. 15(9), pages 1-13, May.
- Jianfeng Lu & Yarong Wang & Jing Ding, 2020. "Nonuniform Heat Transfer Model and Performance of Molten Salt Cavity Receiver," Energies, MDPI, vol. 13(4), pages 1-19, February.
- Omar Behar & Daniel Sbarbaro & Luis Morán, 2020. "A Practical Methodology for the Design and Cost Estimation of Solar Tower Power Plants," Sustainability, MDPI, vol. 12(20), pages 1-16, October.
- Zuo, Yuhang & Li, Yawei & Zhou, Hao, 2022. "Numerical study on preheating process of molten salt tower receiver in windy conditions," Energy, Elsevier, vol. 251(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mostafavi Tehrani, S. Saeed & Taylor, Robert A., 2016. "Off-design simulation and performance of molten salt cavity receivers in solar tower plants under realistic operational modes and control strategies," Applied Energy, Elsevier, vol. 179(C), pages 698-715.
- Wang, Wujun & Fan, Liwu & Laumert, Björn, 2021. "A theoretical heat transfer analysis of different indirectly-irradiated receiver designs for high-temperature concentrating solar power applications," Renewable Energy, Elsevier, vol. 163(C), pages 1983-1993.
- Arias, I. & Cardemil, J. & Zarza, E. & Valenzuela, L. & Escobar, R., 2022. "Latest developments, assessments and research trends for next generation of concentrated solar power plants using liquid heat transfer fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Conroy, Tim & Collins, Maurice N. & Grimes, Ronan, 2020. "A review of steady-state thermal and mechanical modelling on tubular solar receivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Edalati, Saeed & Ameri, Mehran & Iranmanesh, Masoud & Sadeghi, Zeinolabedin, 2017. "Solar photovoltaic power plants in five top oil-producing countries in Middle East: A case study in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1271-1280.
- Xu, Li & Stein, Wesley & Kim, Jin-Soo & Wang, Zhifeng, 2018. "Three-dimensional transient numerical model for the thermal performance of the solar receiver," Renewable Energy, Elsevier, vol. 120(C), pages 550-566.
- Zhang, Qiangqiang & Li, Xin & Wang, Zhifeng & Chang, Chun & Liu, Hong, 2013. "Experimental and theoretical analysis of a dynamic test method for molten salt cavity receiver," Renewable Energy, Elsevier, vol. 50(C), pages 214-221.
- Conroy, Tim & Collins, Maurice N. & Fisher, James & Grimes, Ronan, 2018. "Thermohydraulic analysis of single phase heat transfer fluids in CSP solar receivers," Renewable Energy, Elsevier, vol. 129(PA), pages 150-167.
- Zhang, Qiangqiang & Li, Xin & Wang, Zhifeng & Zhang, Jinbai & El-Hefni, Baligh & Xu, Li, 2015. "Modeling and simulation of a molten salt cavity receiver with Dymola," Energy, Elsevier, vol. 93(P2), pages 1373-1384.
- Liao, Zhirong & Li, Xin & Xu, Chao & Chang, Chun & Wang, Zhifeng, 2014. "Allowable flux density on a solar central receiver," Renewable Energy, Elsevier, vol. 62(C), pages 747-753.
- Zhou, Hao & Li, Yawei & Zuo, Yuhang & Zhou, Mingxi & Fang, Wenfeng & Zhu, Yifan, 2021. "Thermal performance and thermal stress analysis of a 600 MWth solar cylinder external receiver," Renewable Energy, Elsevier, vol. 164(C), pages 331-345.
- Rovense, Francesco & Reyes-Belmonte, Miguel Ángel & Romero, Manuel & González-Aguilar, José, 2022. "Thermo-economic analysis of a particle-based multi-tower solar power plant using unfired combined cycle for evening peak power generation," Energy, Elsevier, vol. 240(C).
- Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
- Razmi, Amir Reza & Hanifi, Amir Reza & Shahbakhti, Mahdi, 2023. "Design, thermodynamic, and economic analyses of a green hydrogen storage concept based on solid oxide electrolyzer/fuel cells and heliostat solar field," Renewable Energy, Elsevier, vol. 215(C).
- Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
- Zhang, Maolong & Du, Xiaoze & Pang, Liping & Xu, Chao & Yang, Lijun, 2016. "Performance of double source boiler with coal-fired and solar power tower heat for supercritical power generating unit," Energy, Elsevier, vol. 104(C), pages 64-75.
- Haidar, Ahmed M.A. & Muttaqi, Kashem & Sutanto, Danny, 2015. "Smart Grid and its future perspectives in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1375-1389.
- Luo, Xianglong & Yi, Zhitong & Zhang, Bingjian & Mo, Songping & Wang, Chao & Song, Mengjie & Chen, Ying, 2017. "Mathematical modelling and optimization of the liquid separation condenser used in organic Rankine cycle," Applied Energy, Elsevier, vol. 185(P2), pages 1309-1323.
- Ma, Ning & Meng, Fugui & Hong, Wenpeng & Li, Haoran & Niu, Xiaojuan, 2023. "Thermodynamic assessment of the dry-cooling supercritical Brayton cycle in a direct-heated solar power tower plant enabled by CO2-propane mixture," Renewable Energy, Elsevier, vol. 203(C), pages 649-663.
- Muhammad Suleman Malik & Naveed Iftikhar & Abdul Wadood & Muhammad Omer Khan & Muhammad Usman Asghar & Shahbaz Khan & Tahir Khurshaid & Ki-Chai Kim & Zabdur Rehman & S. Tauqeer ul Islam Rizvi, 2020. "Design and Fabrication of Solar Thermal Energy Storage System Using Potash Alum as a PCM," Energies, MDPI, vol. 13(23), pages 1-16, November.
More about this item
Keywords
solar energy; solar power thermal plant; central receiver; design; solar energy in Saudi Arabia;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3079-:d:256441. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.