IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v179y2016icp1081-1096.html
   My bibliography  Save this article

The optical efficiency of three different geometries of a small scale cavity receiver for concentrated solar applications

Author

Listed:
  • Daabo, Ahmed M.
  • Mahmoud, Saad
  • Al-Dadah, Raya K.

Abstract

The demand for energy is continually increasing day after day; but at the same time, investigations around the world into sustainable sources of power are growing in number. Concentrated Solar Power (CSP) can act as an efficient low cost energy conversion system to produce electricity which could lead to reducing the continuous demand on conventional fossil fuels. Most of the literature concerning CSP concentrates on the heat losses and their relationship to the receivers’ geometries; where these receivers are evaluated according to their thermal efficiency. The majority of the literature has often neglected heat gain enhancement by the receivers’ geometries, which helps to increase the heat transfer to the working fluid. This work concentrates on the optical efficiency as well as the heat flux distribution of three different geometries. The cylindrical, conical and spherical geometries of a cavity receiver are considered with the objective of analysing their optical and thermal behaviour optically and thermally, using the ray tracing method and a Computational Fluid Dynamic (CFD) model. The results showed that the conical shape of the receiver gathered, as well as absorbed, a higher amount of reflected flux energy than the other shapes, with about 91% and 82% for 75% and 85% absorption ratios respectively. The cavity receiver shapes and their absorption ratio are key parameters which affect the focal point location; thereby there is an optimum distance for each design depending on these two parameters. The results of the simulated work are validated using the experimental work found in the literature. Overall, in order to evaluate the heat balance, 3-D thermal analysis was employed using Fluent 15 and the amount of heat losses for the three shapes was determined. It was observed that the conical shape receiver experienced a lower heat loss. To ensure more confidence in the results, the thermal outcomes were validated against experimental works in the literature and they demonstrated good agreement.

Suggested Citation

  • Daabo, Ahmed M. & Mahmoud, Saad & Al-Dadah, Raya K., 2016. "The optical efficiency of three different geometries of a small scale cavity receiver for concentrated solar applications," Applied Energy, Elsevier, vol. 179(C), pages 1081-1096.
  • Handle: RePEc:eee:appene:v:179:y:2016:i:c:p:1081-1096
    DOI: 10.1016/j.apenergy.2016.07.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916310042
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.07.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sellami, Nazmi & Mallick, Tapas K., 2013. "Optical efficiency study of PV Crossed Compound Parabolic Concentrator," Applied Energy, Elsevier, vol. 102(C), pages 868-876.
    2. Yang, Minlin & Yang, Xiaoxi & Yang, Xiaoping & Ding, Jing, 2010. "Heat transfer enhancement and performance of the molten salt receiver of a solar power tower," Applied Energy, Elsevier, vol. 87(9), pages 2808-2811, September.
    3. Khalil Anwar, M. & Yilbas, B.S. & Shuja, S.Z., 2016. "A thermal battery mimicking a concentrated volumetric solar receiver," Applied Energy, Elsevier, vol. 175(C), pages 16-30.
    4. Fuqiang, Wang & Qingzhi, Lai & Huaizhi, Han & Jianyu, Tan, 2016. "Parabolic trough receiver with corrugated tube for improving heat transfer and thermal deformation characteristics," Applied Energy, Elsevier, vol. 164(C), pages 411-424.
    5. Yang, Xiaoping & Yang, Xiaoxi & Ding, Jing & Shao, Youyuan & Fan, Hongbo, 2012. "Numerical simulation study on the heat transfer characteristics of the tube receiver of the solar thermal power tower," Applied Energy, Elsevier, vol. 90(1), pages 142-147.
    6. Bader, Roman & Pedretti, Andrea & Barbato, Maurizio & Steinfeld, Aldo, 2015. "An air-based corrugated cavity-receiver for solar parabolic trough concentrators," Applied Energy, Elsevier, vol. 138(C), pages 337-345.
    7. Wu, Zhiyong & Li, Shidong & Yuan, Guofeng & Lei, Dongqiang & Wang, Zhifeng, 2014. "Three-dimensional numerical study of heat transfer characteristics of parabolic trough receiver," Applied Energy, Elsevier, vol. 113(C), pages 902-911.
    8. Wu, Zhiyong & Caliot, Cyril & Bai, Fengwu & Flamant, Gilles & Wang, Zhifeng & Zhang, Jinsong & Tian, Chong, 2010. "Experimental and numerical studies of the pressure drop in ceramic foams for volumetric solar receiver applications," Applied Energy, Elsevier, vol. 87(2), pages 504-513, February.
    9. Abdullahi, B. & AL-Dadah, R.K. & Mahmoud, S. & Hood, R., 2015. "Optical and thermal performance of double receiver compound parabolic concentrator," Applied Energy, Elsevier, vol. 159(C), pages 1-10.
    10. Mwesigye, Aggrey & Huan, Zhongjie & Meyer, Josua P., 2015. "Thermodynamic optimisation of the performance of a parabolic trough receiver using synthetic oil–Al2O3 nanofluid," Applied Energy, Elsevier, vol. 156(C), pages 398-412.
    11. Padilla, Ricardo Vasquez & Demirkaya, Gokmen & Goswami, D. Yogi & Stefanakos, Elias & Rahman, Muhammad M., 2011. "Heat transfer analysis of parabolic trough solar receiver," Applied Energy, Elsevier, vol. 88(12), pages 5097-5110.
    12. Roldán, M.I. & Monterreal, R., 2014. "Heat flux and temperature prediction on a volumetric receiver installed in a solar furnace," Applied Energy, Elsevier, vol. 120(C), pages 65-74.
    13. Mojiri, Ahmad & Stanley, Cameron & Rodriguez-Sanchez, David & Everett, Vernie & Blakers, Andrew & Rosengarten, Gary, 2016. "A spectral-splitting PV–thermal volumetric solar receiver," Applied Energy, Elsevier, vol. 169(C), pages 63-71.
    14. Le Roux, W.G. & Bello-Ochende, T. & Meyer, J.P., 2011. "Operating conditions of an open and direct solar thermal Brayton cycle with optimised cavity receiver and recuperator," Energy, Elsevier, vol. 36(10), pages 6027-6036.
    15. Roldán, M.I. & Valenzuela, L. & Zarza, E., 2013. "Thermal analysis of solar receiver pipes with superheated steam," Applied Energy, Elsevier, vol. 103(C), pages 73-84.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daabo, Ahmed M. & Mahmoud, Saad & Al-Dadah, Raya K. & Ahmad, Abdalqader, 2017. "Numerical investigation of pitch value on thermal performance of solar receiver for solar powered Brayton cycle application," Energy, Elsevier, vol. 119(C), pages 523-539.
    2. Soltani, Sara & Bonyadi, Mohammad & Madadi Avargani, Vahid, 2019. "A novel optical-thermal modeling of a parabolic dish collector with a helically baffled cylindrical cavity receiver," Energy, Elsevier, vol. 168(C), pages 88-98.
    3. Venkatachalam, Thirunavukkarasu & Cheralathan, M., 2019. "Effect of aspect ratio on thermal performance of cavity receiver for solar parabolic dish concentrator: An experimental study," Renewable Energy, Elsevier, vol. 139(C), pages 573-581.
    4. Talha Batuhan Korkut & Aytaç Gören & Ahmed Rachid, 2022. "Numerical and Experimental Study of a PVT Water System under Daily Weather Conditions," Energies, MDPI, vol. 15(18), pages 1-14, September.
    5. Zhang, Li & Fang, Jiabin & Wei, Jinjia & Yang, Guidong, 2017. "Numerical investigation on the thermal performance of molten salt cavity receivers with different structures," Applied Energy, Elsevier, vol. 204(C), pages 966-978.
    6. Yan, Jian & Liu, Yong-xiang & Peng, You-Duo, 2022. "Study on the optical performance of novel dish solar concentrator formed by rotating array of plane mirrors with the same size," Renewable Energy, Elsevier, vol. 195(C), pages 416-430.
    7. Yuan, Yu & Wu, Gang & Yang, Qichang & Cheng, Ruifeng & Tong, Yuxin & Zhang, Yi & Fang, Hui & Ma, Qianlei, 2021. "Experimental and analytical optical-thermal performance of evacuated cylindrical tube receiver for solar dish collector," Energy, Elsevier, vol. 234(C).
    8. Rajan, Abhinav & Reddy, K.S., 2023. "Integrated optical and thermal model to investigate the performance of a solar parabolic dish collector coupled with a cavity receiver," Renewable Energy, Elsevier, vol. 219(P1).
    9. Yan, Jian & Peng, You-duo & Cheng, Zi-ran, 2018. "Optimization of a discrete dish concentrator for uniform flux distribution on the cavity receiver of solar concentrator system," Renewable Energy, Elsevier, vol. 129(PA), pages 431-445.
    10. Hai Wang, 2023. "Comparative Study of a Fixed-Focus Fresnel Lens Solar Concentrator/Conical Cavity Receiver System with and without Glass Cover Installed in a Solar Cooker," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    11. Zhu, Han-Hui & Wang, Kun & He, Ya-Ling, 2017. "Thermodynamic analysis and comparison for different direct-heated supercritical CO2 Brayton cycles integrated into a solar thermal power tower system," Energy, Elsevier, vol. 140(P1), pages 144-157.
    12. Taher Maatallah & Ahlem Houcine & Farooq Saeed & Sikandar Khan & Sajid Ali, 2024. "Simulated Performance Analysis of a Hybrid Water-Cooled Photovoltaic/Parabolic Dish Concentrator Coupled with Conical Cavity Receiver," Sustainability, MDPI, vol. 16(2), pages 1-25, January.
    13. Qiu, Yu & He, Ya-Ling & Li, Peiwen & Du, Bao-Cun, 2017. "A comprehensive model for analysis of real-time optical performance of a solar power tower with a multi-tube cavity receiver," Applied Energy, Elsevier, vol. 185(P1), pages 589-603.
    14. Wang, Hai & Huang, Jin & Song, Mengjie & Yan, Jian, 2019. "Effects of receiver parameters on the optical performance of a fixed-focus Fresnel lens solar concentrator/cavity receiver system in solar cooker," Applied Energy, Elsevier, vol. 237(C), pages 70-82.
    15. Haiting Liu & Jiewen Deng & Yue Guan & Liwei Wang, 2022. "Study of Heat Flux Density of Dish Solar Cavity Heat Absorber," Energies, MDPI, vol. 15(21), pages 1-12, October.
    16. Bayrak, Fatih & Abu-Hamdeh, Nidal & Alnefaie, Khaled A. & Öztop, Hakan F., 2017. "A review on exergy analysis of solar electricity production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 755-770.
    17. Chu, Shunzhou & Bai, Fengwu & Zhang, Xiliang & Yang, Bei & Cui, Zhiying & Nie, Fuliang, 2018. "Experimental study and thermal analysis of a tubular pressurized air receiver," Renewable Energy, Elsevier, vol. 125(C), pages 413-424.
    18. Crespi, Francesco & Toscani, Andrea & Zani, Paolo & Sánchez, David & Manzolini, Giampaolo, 2018. "Effect of passing clouds on the dynamic performance of a CSP tower receiver with molten salt heat storage," Applied Energy, Elsevier, vol. 229(C), pages 224-235.
    19. Liang, Hongbo & Zhu, Chunguang & Fan, Man & You, Shijun & Zhang, Huan & Xia, Junbao, 2018. "Study on the thermal performance of a novel cavity receiver for parabolic trough solar collectors," Applied Energy, Elsevier, vol. 222(C), pages 790-798.
    20. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
    21. Liang, Hongbo & Fan, Man & You, Shijun & Zheng, Wandong & Zhang, Huan & Ye, Tianzhen & Zheng, Xuejing, 2017. "A Monte Carlo method and finite volume method coupled optical simulation method for parabolic trough solar collectors," Applied Energy, Elsevier, vol. 201(C), pages 60-68.
    22. Liu, Fanmao & Wu, Ke & Rao, Zaixing & Peng, Youduo, 2019. "Spatial layouts and absorbing surface design of heater tube arrays of direct-illumination receiver used in high power dish/stirling system," Energy, Elsevier, vol. 188(C).
    23. Xu, Li & Stein, Wesley & Kim, Jin-Soo & Wang, Zhifeng, 2018. "Three-dimensional transient numerical model for the thermal performance of the solar receiver," Renewable Energy, Elsevier, vol. 120(C), pages 550-566.
    24. Guilong Dai & Ying Zhuang & Xiaoyu Wang & Xue Chen & Chuang Sun & Shenghua Du, 2022. "Experimental Investigation on the Vector Characteristics of Concentrated Solar Radiation Flux Map," Energies, MDPI, vol. 16(1), pages 1-15, December.
    25. Liang, Qi & He, Ya-Ling & Ren, Qinlong & Zhou, Yi-Peng & Xie, Tao, 2018. "A detailed study on phonon transport in thin silicon membranes with phononic crystal nanostructures," Applied Energy, Elsevier, vol. 227(C), pages 731-741.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    2. Xiao, Gang & Guo, Kaikai & Luo, Zhongyang & Ni, Mingjiang & Zhang, Yanmei & Wang, Cheng, 2014. "Simulation and experimental study on a spiral solid particle solar receiver," Applied Energy, Elsevier, vol. 113(C), pages 178-188.
    3. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
    4. Zheng, Zhang-Jing & Li, Ming-Jia & He, Ya-Ling, 2017. "Thermal analysis of solar central receiver tube with porous inserts and non-uniform heat flux," Applied Energy, Elsevier, vol. 185(P2), pages 1152-1161.
    5. Fuqiang, Wang & Qingzhi, Lai & Huaizhi, Han & Jianyu, Tan, 2016. "Parabolic trough receiver with corrugated tube for improving heat transfer and thermal deformation characteristics," Applied Energy, Elsevier, vol. 164(C), pages 411-424.
    6. Hachicha, Ahmed Amine & Rodríguez, Ivette & Ghenai, Chaouki, 2018. "Thermo-hydraulic analysis and numerical simulation of a parabolic trough solar collector for direct steam generation," Applied Energy, Elsevier, vol. 214(C), pages 152-165.
    7. Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
    8. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    9. Huang, Zhen & Li, Zeng-Yao & Tao, Wen-Quan, 2017. "Numerical study on combined natural and forced convection in the fully-developed turbulent region for a horizontal circular tube heated by non-uniform heat flux," Applied Energy, Elsevier, vol. 185(P2), pages 2194-2208.
    10. Mwesigye, Aggrey & Bello-Ochende, Tunde & Meyer, Josua P., 2014. "Heat transfer and thermodynamic performance of a parabolic trough receiver with centrally placed perforated plate inserts," Applied Energy, Elsevier, vol. 136(C), pages 989-1003.
    11. Fuqiang, Wang & Zhexiang, Tang & Xiangtao, Gong & Jianyu, Tan & Huaizhi, Han & Bingxi, Li, 2016. "Heat transfer performance enhancement and thermal strain restrain of tube receiver for parabolic trough solar collector by using asymmetric outward convex corrugated tube," Energy, Elsevier, vol. 114(C), pages 275-292.
    12. Abdala, Antar M.M. & Elwekeel, Fifi N.M., 2024. "Investigation of the performance of a parabolic trough collector outfitted with annular absorber tubes," Renewable Energy, Elsevier, vol. 226(C).
    13. Zhu, Xiaowei & Zhu, Lei & Zhao, Jingquan, 2017. "Wavy-tape insert designed for managing highly concentrated solar energy on absorber tube of parabolic trough receiver," Energy, Elsevier, vol. 141(C), pages 1146-1155.
    14. Cheng, Ze-Dong & He, Ya-Ling & Qiu, Yu, 2015. "A detailed nonuniform thermal model of a parabolic trough solar receiver with two halves and two inactive ends," Renewable Energy, Elsevier, vol. 74(C), pages 139-147.
    15. Osorio, Julian D. & Rivera-Alvarez, Alejandro, 2019. "Performance analysis of Parabolic Trough Collectors with Double Glass Envelope," Renewable Energy, Elsevier, vol. 130(C), pages 1092-1107.
    16. Cheng, Ze-Dong & Zhao, Xue-Ru & He, Ya-Ling, 2018. "Novel optical efficiency formulas for parabolic trough solar collectors: Computing method and applications," Applied Energy, Elsevier, vol. 224(C), pages 682-697.
    17. Sandá, Antonio & Moya, Sara L. & Valenzuela, Loreto, 2019. "Modelling and simulation tools for direct steam generation in parabolic-trough solar collectors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    18. Mwesigye, Aggrey & Meyer, Josua P., 2017. "Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios," Applied Energy, Elsevier, vol. 193(C), pages 393-413.
    19. Yang, S. & Sensoy, T.S. & Ordonez, J.C., 2018. "Dynamic 3D volume element model of a parabolic trough solar collector for simulation and optimization," Applied Energy, Elsevier, vol. 217(C), pages 509-526.
    20. Fei Cao & Jiarui Pang & Xianzhe Gu & Miaomiao Wang & Yanqin Shangguan, 2023. "Performance Simulation of Solar Trough Concentrators: Optical and Thermal Comparisons," Energies, MDPI, vol. 16(4), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:179:y:2016:i:c:p:1081-1096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.