IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i2p632-641.html
   My bibliography  Save this article

Life cycle assessment of electricity generation using fast pyrolysis bio-oil

Author

Listed:
  • Fan, Jiqing
  • Kalnes, Tom N.
  • Alward, Matthew
  • Klinger, Jordan
  • Sadehvandi, Adam
  • Shonnard, David R.

Abstract

Biomass is expected to become an important energy source in U.S. electricity generation under state-lead renewable portfolio standards. This paper investigated the greenhouse gas (GHG) emissions for energy generated from forest resources through pyrolysis-based processing. The GHG emissions of producing pyrolysis bio-oil (pyrolysis oil) from different forest resources were first investigated; logging residues collected from natural regeneration mixed hardwood stands, hybrid poplar cultivated and harvested from abandoned agricultural lands, short rotation forestry (SRF) willow plantations and waste wood available at the site of the pyrolysis plant. Effects of biomass transportation were investigated through a range of distances to a central pyrolysis facility through road transport by semi-truck. Pyrolysis oil is assumed to be converted to electrical power through co-combustion in conventional fossil fuels power plants, gas turbine combined cycle (GTCC) and diesel generators. Life cycle GHG emissions were compared with power generated using fossil fuels and power generated using biomass direct combustion in a conventional Rankine power plant. Life cycle GHG savings of 77%–99% were estimated for power generation from pyrolysis oil combustion relative to fossil fuels combustion, depending on the biomass feedstock and combustion technologies used. Several scenario analyses were conducted to determine effects of pyrolysis oil transportation distance, N-fertilizer inputs to energy crop plantations, and assumed electricity mixes for pyrolysis oil production.

Suggested Citation

  • Fan, Jiqing & Kalnes, Tom N. & Alward, Matthew & Klinger, Jordan & Sadehvandi, Adam & Shonnard, David R., 2011. "Life cycle assessment of electricity generation using fast pyrolysis bio-oil," Renewable Energy, Elsevier, vol. 36(2), pages 632-641.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:2:p:632-641
    DOI: 10.1016/j.renene.2010.06.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110003186
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.06.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chiaramonti, David & Oasmaa, Anja & Solantausta, Yrjö, 2007. "Power generation using fast pyrolysis liquids from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1056-1086, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guangling Zhao & Josep M. Guerrero & Yingying Pei, 2016. "Marginal Generation Technology in the Chinese Power Market towards 2030 Based on Consequential Life Cycle Assessment," Energies, MDPI, vol. 9(10), pages 1-14, September.
    2. Akhil Kadiyala & Raghava Kommalapati & Ziaul Huque, 2016. "Evaluation of the Life Cycle Greenhouse Gas Emissions from Different Biomass Feedstock Electricity Generation Systems," Sustainability, MDPI, vol. 8(11), pages 1-12, November.
    3. Bennion, Edward P. & Ginosar, Daniel M. & Moses, John & Agblevor, Foster & Quinn, Jason C., 2015. "Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways," Applied Energy, Elsevier, vol. 154(C), pages 1062-1071.
    4. Dufour, Javier & Iribarren, Diego, 2012. "Life cycle assessment of biodiesel production from free fatty acid-rich wastes," Renewable Energy, Elsevier, vol. 38(1), pages 155-162.
    5. Pedroso, Daniel Travieso & Machin, Einara Blanco & Proenza Pérez, Nestor & Braga, Lúcia Bollini & Silveira, José Luz, 2017. "Technical assessment of the Biomass Integrated Gasification/Gas Turbine Combined Cycle (BIG/GTCC) incorporation in the sugarcane industry," Renewable Energy, Elsevier, vol. 114(PB), pages 464-479.
    6. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    7. Patel, Madhumita & Zhang, Xiaolei & Kumar, Amit, 2016. "Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1486-1499.
    8. Campos-Guzmán, Verónica & García-Cáscales, M. Socorro & Espinosa, Nieves & Urbina, Antonio, 2019. "Life Cycle Analysis with Multi-Criteria Decision Making: A review of approaches for the sustainability evaluation of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 343-366.
    9. Cambero, Claudia & Hans Alexandre, Mariane & Sowlati, Taraneh, 2015. "Life cycle greenhouse gas analysis of bioenergy generation alternatives using forest and wood residues in remote locations: A case study in British Columbia, Canada," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 59-72.
    10. Ali, Babkir & Hedayati-Dezfooli, M. & Gamil, Ahmed, 2023. "Sustainability assessment of alternative energy power generation pathways through the development of impact indicators for water, land, GHG emissions, and cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    11. Roy, Poritosh & Dias, Goretty, 2017. "Prospects for pyrolysis technologies in the bioenergy sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 59-69.
    12. Gutiérrez Ortiz, F.J. & Alonso-Fariñas, B. & Campanario, F.J. & Kruse, A., 2020. "Life cycle assessment of the Fischer-Tropsch biofuels production by supercritical water reforming of the bio-oil aqueous phase," Energy, Elsevier, vol. 210(C).
    13. Brassard, P. & Godbout, S. & Hamelin, L., 2021. "Framework for consequential life cycle assessment of pyrolysis biorefineries: A case study for the conversion of primary forestry residues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    14. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    15. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    16. Muench, Stefan & Guenther, Edeltraud, 2013. "A systematic review of bioenergy life cycle assessments," Applied Energy, Elsevier, vol. 112(C), pages 257-273.
    17. Yang, Qing & Han, Fei & Chen, Yingquan & Yang, Haiping & Chen, Hanping, 2016. "Greenhouse gas emissions of a biomass-based pyrolysis plant in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1580-1590.
    18. Mohsin Raza & Abrar Inayat & Ashfaq Ahmed & Farrukh Jamil & Chaouki Ghenai & Salman R. Naqvi & Abdallah Shanableh & Muhammad Ayoub & Ammara Waris & Young-Kwon Park, 2021. "Progress of the Pyrolyzer Reactors and Advanced Technologies for Biomass Pyrolysis Processing," Sustainability, MDPI, vol. 13(19), pages 1-42, October.
    19. Wang, Chu & Ding, Haozhi & Zhang, Yiming & Zhu, Xifeng, 2020. "Analysis of property variation and stability on the aging of bio-oil from fractional condensation," Renewable Energy, Elsevier, vol. 148(C), pages 720-728.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taghizadeh-Alisaraei, Ahmad & Assar, Hossein Alizadeh & Ghobadian, Barat & Motevali, Ali, 2017. "Potential of biofuel production from pistachio waste in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 510-522.
    2. Yang, S.I. & Hsu, T.C. & Wu, C.Y. & Chen, K.H. & Hsu, Y.L. & Li, Y.H., 2014. "Application of biomass fast pyrolysis part II: The effects that bio-pyrolysis oil has on the performance of diesel engines," Energy, Elsevier, vol. 66(C), pages 172-180.
    3. Fox, James A. & Stacey, Neil T., 2019. "Process targeting: An energy based comparison of waste plastic processing technologies," Energy, Elsevier, vol. 170(C), pages 273-283.
    4. Van de Beld, Bert & Holle, Elmar & Florijn, Jan, 2013. "The use of pyrolysis oil and pyrolysis oil derived fuels in diesel engines for CHP applications," Applied Energy, Elsevier, vol. 102(C), pages 190-197.
    5. Sulaiman, F. & Abdullah, N., 2011. "Optimum conditions for maximising pyrolysis liquids of oil palm empty fruit bunches," Energy, Elsevier, vol. 36(5), pages 2352-2359.
    6. Amutio, M. & Lopez, G. & Artetxe, M. & Elordi, G. & Olazar, M. & Bilbao, J., 2012. "Influence of temperature on biomass pyrolysis in a conical spouted bed reactor," Resources, Conservation & Recycling, Elsevier, vol. 59(C), pages 23-31.
    7. Hammond, Jim & Shackley, Simon & Sohi, Saran & Brownsort, Peter, 2011. "Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK," Energy Policy, Elsevier, vol. 39(5), pages 2646-2655, May.
    8. Xuan, Jin & Leung, Michael K.H. & Leung, Dennis Y.C. & Ni, Meng, 2009. "A review of biomass-derived fuel processors for fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1301-1313, August.
    9. Waheed A. Rasaq & Mateusz Golonka & Miklas Scholz & Andrzej Białowiec, 2021. "Opportunities and Challenges of High-Pressure Fast Pyrolysis of Biomass: A Review," Energies, MDPI, vol. 14(17), pages 1-20, August.
    10. Luis Puigjaner & Mar Pérez-Fortes & José M. Laínez-Aguirre, 2015. "Towards a Carbon-Neutral Energy Sector: Opportunities and Challenges of Coordinated Bioenergy Supply Chains-A PSE Approach," Energies, MDPI, vol. 8(6), pages 1-48, June.
    11. Leng, Lijian & Li, Hui & Yuan, Xingzhong & Zhou, Wenguang & Huang, Huajun, 2018. "Bio-oil upgrading by emulsification/microemulsification: A review," Energy, Elsevier, vol. 161(C), pages 214-232.
    12. Sallevelt, J.L.H.P. & Gudde, J.E.P. & Pozarlik, A.K. & Brem, G., 2014. "The impact of spray quality on the combustion of a viscous biofuel in a micro gas turbine," Applied Energy, Elsevier, vol. 132(C), pages 575-585.
    13. Braimakis, Konstantinos & Atsonios, Konstantinos & Panopoulos, Kyriakos D. & Karellas, Sotirios & Kakaras, Emmanuel, 2014. "Economic evaluation of decentralized pyrolysis for the production of bio-oil as an energy carrier for improved logistics towards a large centralized gasification plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 57-72.
    14. Fernandez, Enara & Santamaria, Laura & Amutio, Maider & Artetxe, Maite & Arregi, Aitor & Lopez, Gartzen & Bilbao, Javier & Olazar, Martin, 2022. "Role of temperature in the biomass steam pyrolysis in a conical spouted bed reactor," Energy, Elsevier, vol. 238(PC).
    15. Choi, Sang Kyu & Choi, Yeon Seok & Kim, Seock Joon & Jeong, Yeon Woo, 2016. "Characteristics of flame stability and gaseous emission of biocrude-oil/ethanol blends in a pilot-scale spray burner," Renewable Energy, Elsevier, vol. 91(C), pages 516-523.
    16. Hossain, A.K. & Davies, P.A., 2013. "Pyrolysis liquids and gases as alternative fuels in internal combustion engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 165-189.
    17. Sallevelt, J.L.H.P. & Pozarlik, A.K. & Brem, G., 2015. "Characterization of viscous biofuel sprays using digital imaging in the near field region," Applied Energy, Elsevier, vol. 147(C), pages 161-175.
    18. Qiang Lu & Zhi-Bo Zhang & Hang-Tao Liao & Xiao-Chu Yang & Chang-Qing Dong, 2012. "Lubrication Properties of Bio-Oil and Its Emulsions with Diesel Oil," Energies, MDPI, vol. 5(3), pages 1-11, March.
    19. Daya Shankar Pandey & Giannis Katsaros & Christian Lindfors & James J. Leahy & Savvas A. Tassou, 2019. "Fast Pyrolysis of Poultry Litter in a Bubbling Fluidised Bed Reactor: Energy and Nutrient Recovery," Sustainability, MDPI, vol. 11(9), pages 1-17, May.
    20. Gutiérrez-Antonio, C. & Gómez-Castro, F.I. & de Lira-Flores, J.A. & Hernández, S., 2017. "A review on the production processes of renewable jet fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 709-729.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:2:p:632-641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.