IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v33y2008i4p813-826.html
   My bibliography  Save this article

A suitable model plant for control of the set fuel cell−DC/DC converter

Author

Listed:
  • Andújar, J.M.
  • Segura, F.
  • Vasallo, M.J.

Abstract

In this work a state and transfer function model of the set made up of a proton exchange membrane (PEM) fuel cell and a DC/DC converter is developed. The set is modelled as a plant controlled by the converter duty cycle. In addition to allow setting the plant operating point at any point of its characteristic curve (two interesting points are maximum efficiency and maximum power points), this approach also allows the connection of the fuel cell to other energy generation and storage devices, given that, as they all usually share a single DC bus, a thorough control of the interconnected devices is required. First, the state and transfer function models of the fuel cell and the converter are obtained. Then, both models are related in order to achieve the fuel cell+DC/DC converter set (plant) model. The results of the theoretical developments are validated by simulation on a real fuel cell model.

Suggested Citation

  • Andújar, J.M. & Segura, F. & Vasallo, M.J., 2008. "A suitable model plant for control of the set fuel cell−DC/DC converter," Renewable Energy, Elsevier, vol. 33(4), pages 813-826.
  • Handle: RePEc:eee:renene:v:33:y:2008:i:4:p:813-826
    DOI: 10.1016/j.renene.2007.04.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148107001310
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2007.04.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Durán, E. & Andújar, J.M. & Segura, F. & Barragán, A.J., 2011. "A high-flexibility DC load for fuel cell and solar arrays power sources based on DC-DC converters," Applied Energy, Elsevier, vol. 88(5), pages 1690-1702, May.
    2. Andújar, J.M. & Segura, F. & Isorna, F. & Calderón, A.J., 2018. "Comprehensive diagnosis methodology for faults detection and identification, and performance improvement of Air-Cooled Polymer Electrolyte Fuel Cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 193-207.
    3. Sun, Zhe & Wang, Ning & Bi, Yunrui & Srinivasan, Dipti, 2015. "Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm," Energy, Elsevier, vol. 90(P2), pages 1334-1341.
    4. Moazeni, Faegheh & Khazaei, Javad, 2020. "Electrochemical optimization and small-signal analysis of grid-connected polymer electrolyte membrane (PEM) fuel cells for renewable energy integration," Renewable Energy, Elsevier, vol. 155(C), pages 848-861.
    5. Vasallo, Manuel Jesús & Bravo, José Manuel & Andújar, José Manuel, 2013. "Optimal sizing for UPS systems based on batteries and/or fuel cell," Applied Energy, Elsevier, vol. 105(C), pages 170-181.
    6. Sugiyatno & Imam Djunaedi & Novan Agung Mahardiono, 2015. "Modelling and Simulation of Hybrid Control Systems in Solar Cell Battery Super capacitor," International Journal of Technology and Engineering Studies, PROF.IR.DR.Mohid Jailani Mohd Nor, vol. 1(3), pages 74-80.
    7. Segura, Francisca & Andújar, José Manuel, 2012. "Power management based on sliding control applied to fuel cell systems: A further step towards the hybrid control concept," Applied Energy, Elsevier, vol. 99(C), pages 213-225.
    8. Andújar, J.M. & Segura, F., 2009. "Fuel cells: History and updating. A walk along two centuries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2309-2322, December.
    9. Francisca Segura & José Manuel Andújar, 2015. "Modular PEM Fuel Cell SCADA & Simulator System," Resources, MDPI, vol. 4(3), pages 1-21, September.
    10. Andújar, J.M. & Segura, F. & Durán, E. & Rentería, L.A., 2011. "Optimal interface based on power electronics in distributed generation systems for fuel cells," Renewable Energy, Elsevier, vol. 36(11), pages 2759-2770.
    11. Melika Hinaje & Stéphane Raël & Panee Noiying & Dinh An Nguyen & Bernard Davat, 2012. "An Equivalent Electrical Circuit Model of Proton Exchange Membrane Fuel Cells Based on Mathematical Modelling," Energies, MDPI, vol. 5(8), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:33:y:2008:i:4:p:813-826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.