IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i3p656-666.html
   My bibliography  Save this article

Model prediction of effects of operating parameters on proton exchange membrane fuel cell performance

Author

Listed:
  • Yuan, Wei
  • Tang, Yong
  • Pan, Minqiang
  • Li, Zongtao
  • Tang, Biao

Abstract

The performance of a proton exchange membrane (PEM) fuel cell is greatly affected by the operating parameters. Appropriate operating parameters are necessary for PEM fuel cells to maintain stable performance. A three-dimensional multi-phase fuel cell model (FCM) is developed to predict the effects of operating parameters (e.g. operating pressure, fuel cell temperature, relative humidity of reactant gases, and air stoichiometric ratio) on the performance of PEM fuel cells. The model presented in this paper is a typical nine-layer FCM that consists of current collectors, flow channels, gas diffusion layers, catalysts layers at the anode and the cathode as well as the membrane. A commercial Computational Fluid Dynamics (CFD) software package Fluent is used to solve this predictive model through SIMPLE algorithm and the modeling results are illustrated via polarization curves including I–V and I–P curves. The results indicate that the cell performance can be enhanced by increasing operating pressure and operating temperature. The anode humidification has more significant influences on the cell performance than the cathode humidification, and the best performance occurs at moderate air relative humidity while the hydrogen is fully humidified. In addition, the cell performance proves to be improved with the increase of air stoichiometric ratio. Based on these conclusions, several suggestions for engineering practice are also provided.

Suggested Citation

  • Yuan, Wei & Tang, Yong & Pan, Minqiang & Li, Zongtao & Tang, Biao, 2010. "Model prediction of effects of operating parameters on proton exchange membrane fuel cell performance," Renewable Energy, Elsevier, vol. 35(3), pages 656-666.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:3:p:656-666
    DOI: 10.1016/j.renene.2009.08.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109003760
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.08.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Sangseok & Jung, Dohoy, 2008. "Thermal management strategy for a proton exchange membrane fuel cell system with a large active cell area," Renewable Energy, Elsevier, vol. 33(12), pages 2540-2548.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Yuan & Zunlong Jin & Penghui Yang & Youchen Yang & Dingbiao Wang & Xiaotang Chen, 2021. "Numerical Analysis of the Influence of Different Flow Patterns on Power and Reactant Transmission in Tubular-Shaped PEMFC," Energies, MDPI, vol. 14(8), pages 1-16, April.
    2. Zhang, Jian & Huang, Pengyi & Ding, Honghui & Xin, Dongqun & Sun, Shufeng, 2023. "Investigation of the three-dimensional flow field for proton exchange membrane fuel cell with additive manufactured stainless steel bipolar plates: Numerical simulation and experiments," Energy, Elsevier, vol. 269(C).
    3. Lakshminarayana, G. & Nogami, Masayuki & Kityk, I.V., 2010. "Synthesis and characterization of anhydrous proton conducting inorganic–organic composite membranes for medium temperature proton exchange membrane fuel cells (PEMFCs)," Energy, Elsevier, vol. 35(12), pages 5260-5268.
    4. Wang, Zhenhao & Hu, Kaihua & Zhang, Jian & Ding, Honghui & Xin, Dongqun & Zhang, Fengyun & Sun, Shufeng, 2023. "Gas-liquid mass transfer characteristics of a novel three-dimensional flow field bipolar plate for laser additive manufacturing of proton exchange membrane fuel cell," Renewable Energy, Elsevier, vol. 212(C), pages 308-319.
    5. González-Espasandín, Óscar & Leo, Teresa J. & Raso, Miguel A. & Navarro, Emilio, 2019. "Direct methanol fuel cell (DMFC) and H2 proton exchange membrane fuel (PEMFC/H2) cell performance under atmospheric flight conditions of Unmanned Aerial Vehicles," Renewable Energy, Elsevier, vol. 130(C), pages 762-773.
    6. Jiang, Ke & Zhao, Taotao & Fan, Wenxuan & Liu, Zhenning & Lu, Guolong, 2023. "Ramped step flow field to enhance mass transfer capacity and performance for PEMFC," Renewable Energy, Elsevier, vol. 219(P2).
    7. Asadi, Mohammad Reza & Ghasabehi, Mehrdad & Ghanbari, Sina & Shams, Mehrzad, 2024. "The optimization of an innovative interdigitated flow field proton exchange membrane fuel cell by using artificial intelligence," Energy, Elsevier, vol. 290(C).
    8. Movahedi, M. & Ramiar, A. & Ranjber, A.A., 2018. "3D numerical investigation of clamping pressure effect on the performance of proton exchange membrane fuel cell with interdigitated flow field," Energy, Elsevier, vol. 142(C), pages 617-632.
    9. Chen Li & Ashanti M. Sallee & Xiaoyu Zhang & Sandeep Kumar, 2018. "Electrochemical Hydrogenation of Acetone to Produce Isopropanol Using a Polymer Electrolyte Membrane Reactor," Energies, MDPI, vol. 11(10), pages 1-17, October.
    10. Tzelepis, Stefanos & Kavadias, Kosmas A. & Marnellos, George E. & Xydis, George, 2021. "A review study on proton exchange membrane fuel cell electrochemical performance focusing on anode and cathode catalyst layer modelling at macroscopic level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    11. Feng, Pengfei & Tan, Ligang & Cao, Yucheng & Chen, Ding, 2023. "Numerical investigations of two-phase flow coupled with species transport in proton exchange membrane fuel cells," Energy, Elsevier, vol. 278(PA).
    12. Jian, Qi-fei & Ma, Guang-qing & Qiu, Xiao-liang, 2014. "Influences of gas relative humidity on the temperature of membrane in PEMFC with interdigitated flow field," Renewable Energy, Elsevier, vol. 62(C), pages 129-136.
    13. Wu, Ziyao & Pei, Pucheng & Xu, Huachi & Jia, Xiaoning & Ren, Peng & Wang, Bozheng, 2019. "Study on the effect of membrane electrode assembly parameters on polymer electrolyte membrane fuel cell performance by galvanostatic charging method," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    14. Zheng Huang & Laisuo Su & Yunjie Yang & Linsong Gao & Xinyu Liu & Heng Huang & Yubai Li & Yongchen Song, 2023. "Three-Dimensional Simulation on the Effects of Different Parameters and Pt Loading on the Long-Term Performance of Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    15. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2022. "A novel electrochemical refrigeration system based on the combined proton exchange membrane fuel cell-electrolyzer," Applied Energy, Elsevier, vol. 316(C).
    16. Deng, Hao & Wang, Dawei & Xie, Xu & Zhou, Yibo & Yin, Yan & Du, Qing & Jiao, Kui, 2016. "Modeling of hydrogen alkaline membrane fuel cell with interfacial effect and water management optimization," Renewable Energy, Elsevier, vol. 91(C), pages 166-177.
    17. Gong, Fan & Yang, Xiaolong & Zhang, Xun & Mao, Zongqiang & Gao, Weitao & Wang, Cheng, 2023. "The study of Tesla valve flow field on the net power of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 329(C).
    18. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2022. "Optimal design of a hybrid power generation system based on integrating PEM fuel cell and PEM electrolyzer as a moderator for micro-renewable energy systems," Energy, Elsevier, vol. 260(C).
    19. Melika Hinaje & Stéphane Raël & Panee Noiying & Dinh An Nguyen & Bernard Davat, 2012. "An Equivalent Electrical Circuit Model of Proton Exchange Membrane Fuel Cells Based on Mathematical Modelling," Energies, MDPI, vol. 5(8), pages 1-21, July.
    20. Li, Wenkai & Zhang, Qinglei & Wang, Chao & Yan, Xiaohui & Shen, Shuiyun & Xia, Guofeng & Zhu, Fengjuan & Zhang, Junliang, 2017. "Experimental and numerical analysis of a three-dimensional flow field for PEMFCs," Applied Energy, Elsevier, vol. 195(C), pages 278-288.
    21. Ahmed G. Abokhalil & Mohammad Alobaid & Ahmed Al Makky, 2023. "Innovative Approaches to Enhance the Performance and Durability of Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 16(14), pages 1-13, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Becker, F. & Cosse, C. & Gentner, C. & Schulz, D. & Liphardt, L., 2024. "Novel electrochemical and thermodynamic conditioning approaches and their evaluation for open cathode PEM-FC stacks," Applied Energy, Elsevier, vol. 363(C).
    2. Luo, Lizhong & Jian, Qifei & Huang, Bi & Huang, Zipeng & Zhao, Jing & Cao, Songyang, 2019. "Experimental study on temperature characteristics of an air-cooled proton exchange membrane fuel cell stack," Renewable Energy, Elsevier, vol. 143(C), pages 1067-1078.
    3. Kim, Soohwan & Jeong, Hoyoung & Lee, Hoseong, 2021. "Cold-start performance investigation of fuel cell electric vehicles with heat pump-assisted thermal management systems," Energy, Elsevier, vol. 232(C).
    4. Ou, Kai & Yuan, Wei-Wei & Kim, Young-Bae, 2021. "Development of optimal energy management for a residential fuel cell hybrid power system with heat recovery," Energy, Elsevier, vol. 219(C).
    5. Vu, Hoang Nghia & Truong Le Tri, Dat & Nguyen, Huu Linh & Kim, Younghyeon & Yu, Sangseok, 2023. "Multifunctional bypass valve for water management and surge protection in a proton-exchange membrane fuel cell supply-air system," Energy, Elsevier, vol. 278(C).
    6. Tianqi He & Rongqi Shi & Jie Peng & Weilin Zhuge & Yangjun Zhang, 2016. "Waste Heat Recovery of a PEMFC System by Using Organic Rankine Cycle," Energies, MDPI, vol. 9(4), pages 1-15, April.
    7. Xu, X.M. & He, R., 2014. "Review on the heat dissipation performance of battery pack with different structures and operation conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 301-315.
    8. Tiancai Ma & Weikang Lin & Yanbo Yang & Ming Cong & Zhuoping Yu & Qiongqiong Zhou, 2019. "Research on Control Algorithm of Proton Exchange Membrane Fuel Cell Cooling System," Energies, MDPI, vol. 12(19), pages 1-15, September.
    9. Yu, Sangseok & Jung, Dohoy, 2010. "A study of operation strategy of cooling module with dynamic fuel cell system model for transportation application," Renewable Energy, Elsevier, vol. 35(11), pages 2525-2532.
    10. Rao, Zhonghao & Wang, Shuangfeng, 2011. "A review of power battery thermal energy management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4554-4571.
    11. Asensio, F.J. & San Martín, J.I. & Zamora, I. & Saldaña, G. & Oñederra, O., 2019. "Analysis of electrochemical and thermal models and modeling techniques for polymer electrolyte membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    12. Sattari Sadat, Seyed Mohammad & Ghaebi, Hadi & Lavasani, Arash Mirabdolah, 2020. "4E analyses of an innovative polygeneration system based on SOFC," Renewable Energy, Elsevier, vol. 156(C), pages 986-1007.
    13. Rahgoshay, S.M. & Ranjbar, A.A. & Ramiar, A. & Alizadeh, E., 2017. "Thermal investigation of a PEM fuel cell with cooling flow field," Energy, Elsevier, vol. 134(C), pages 61-73.
    14. Yang, Luo & Nik-Ghazali, Nik-Nazri & Ali, Mohammed A.H. & Chong, Wen Tong & Yang, Zhenzhong & Liu, Haichao, 2023. "A review on thermal management in proton exchange membrane fuel cells: Temperature distribution and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    15. Huu-Linh Nguyen & Sang-Min Lee & Sangseok Yu, 2023. "A Comprehensive Review of Degradation Prediction Methods for an Automotive Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 16(12), pages 1-32, June.
    16. Zhang, Bo & Lin, Fei & Zhang, Caizhi & Liao, Ruiyue & Wang, Ya-Xiong, 2020. "Design and implementation of model predictive control for an open-cathode fuel cell thermal management system," Renewable Energy, Elsevier, vol. 154(C), pages 1014-1024.
    17. Chen, Ben & Deng, Qihao & Yang, Guanghua & Zhou, Yu & Chen, Wenshang & Cai, Yonghua & Tu, Zhengkai, 2023. "Numerical study on heat transfer characteristics and performance evaluation of PEMFC based on multiphase electrochemical model coupled with cooling channel," Energy, Elsevier, vol. 285(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:3:p:656-666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.