IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i1p328-334.html
   My bibliography  Save this article

Performance and emission study in manifold hydrogen injection with diesel as an ignition source for different start of injection

Author

Listed:
  • Saravanan, N.
  • Nagarajan, G.

Abstract

Over the past two decades there has been a considerable effort to develop and introduce alternative transportation fuels to replace conventional fuels, gasoline and diesel. Environmental issues are the principal driving forces behind this effort. To date the bulk of research has focused on the carbon-based fuels such as reformulated gasoline, methanol and natural gas. One alternative fuel to carbon-based fuels is hydrogen which is considered to be low polluting fuel. In the present experimental investigation hydrogen was injected into the intake manifold by using an injector. Using an electronic control unit (ECU) the injection timing and the duration were controlled. From the results it is observed that the optimum injection timing is at gas exchange top dead center (GTDC). The efficiency improved by about 15% with an increase in NOX emission by 3% compared to diesel. The smoke emission decreased by almost 100%. A net reduction in carbon emissions was also noticed due to the use of hydrogen. By adopting manifold injection technique the hydrogen–diesel dual fuel engine operates smoothly with a significant improvement in performance and reduction in emissions.

Suggested Citation

  • Saravanan, N. & Nagarajan, G., 2009. "Performance and emission study in manifold hydrogen injection with diesel as an ignition source for different start of injection," Renewable Energy, Elsevier, vol. 34(1), pages 328-334.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:1:p:328-334
    DOI: 10.1016/j.renene.2008.04.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148108001365
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2008.04.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saravanan, N. & Nagarajan, G. & Kalaiselvan, K.M. & Dhanasekaran, C., 2008. "An experimental investigation on hydrogen as a dual fuel for diesel engine system with exhaust gas recirculation technique," Renewable Energy, Elsevier, vol. 33(3), pages 422-427.
    2. Saravanan, N. & Nagarajan, G. & Narayanasamy, S., 2008. "An experimental investigation on DI diesel engine with hydrogen fuel," Renewable Energy, Elsevier, vol. 33(3), pages 415-421.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bose, Probir Kumar & Deb, Madhujit & Banerjee, Rahul & Majumder, Arindam, 2013. "Multi objective optimization of performance parameters of a single cylinder diesel engine running with hydrogen using a Taguchi-fuzzy based approach," Energy, Elsevier, vol. 63(C), pages 375-386.
    2. Yilmaz, I.T. & Gumus, M., 2018. "Effects of hydrogen addition to the intake air on performance and emissions of common rail diesel engine," Energy, Elsevier, vol. 142(C), pages 1104-1113.
    3. Santanu Kumar Dash & Suprava Chakraborty & Michele Roccotelli & Umesh Kumar Sahu, 2022. "Hydrogen Fuel for Future Mobility: Challenges and Future Aspects," Sustainability, MDPI, vol. 14(14), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Namasivayam, A.M. & Korakianitis, T. & Crookes, R.J. & Bob-Manuel, K.D.H. & Olsen, J., 2010. "Biodiesel, emulsified biodiesel and dimethyl ether as pilot fuels for natural gas fuelled engines," Applied Energy, Elsevier, vol. 87(3), pages 769-778, March.
    2. Alrazen, Hayder A. & Abu Talib, A.R. & Adnan, R. & Ahmad, K.A., 2016. "A review of the effect of hydrogen addition on the performance and emissions of the compression – Ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 785-796.
    3. Rimkus, Alfredas & Matijošius, Jonas & Bogdevičius, Marijonas & Bereczky, Ákos & Török, Ádám, 2018. "An investigation of the efficiency of using O2 and H2 (hydrooxile gas -HHO) gas additives in a ci engine operating on diesel fuel and biodiesel," Energy, Elsevier, vol. 152(C), pages 640-651.
    4. Lounici, M.S. & Benbellil, M.A. & Loubar, K. & Niculescu, D.C. & Tazerout, M., 2017. "Knock characterization and development of a new knock indicator for dual-fuel engines," Energy, Elsevier, vol. 141(C), pages 2351-2361.
    5. Thangaraja, J. & Kannan, C., 2016. "Effect of exhaust gas recirculation on advanced diesel combustion and alternate fuels - A review," Applied Energy, Elsevier, vol. 180(C), pages 169-184.
    6. Khandal, S.V. & Banapurmath, N.R. & Gaitonde, V.N. & Hiremath, S.S., 2017. "Paradigm shift from mechanical direct injection diesel engines to advanced injection strategies of diesel homogeneous charge compression ignition (HCCI) engines- A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 369-384.
    7. Zhou, J.H. & Cheung, C.S. & Leung, C.W., 2014. "Combustion, performance, regulated and unregulated emissions of a diesel engine with hydrogen addition," Applied Energy, Elsevier, vol. 126(C), pages 1-12.
    8. Yadav, Vinod Singh & Soni, S.L. & Sharma, Dilip, 2014. "Engine performance of optimized hydrogen-fueled direct injection engine," Energy, Elsevier, vol. 65(C), pages 116-122.
    9. Pham, Quangkhai & Park, Sungwook & Agarwal, Avinash Kumar & Park, Suhan, 2022. "Review of dual-fuel combustion in the compression-ignition engine: Spray, combustion, and emission," Energy, Elsevier, vol. 250(C).
    10. Hairuddin, A. Aziz & Yusaf, Talal & Wandel, Andrew P., 2014. "A review of hydrogen and natural gas addition in diesel HCCI engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 739-761.
    11. Deb, Madhujit & Paul, Abhishek & Debroy, Durbadal & Sastry, G.R.K. & Panua, Raj Sekhar & Bose, P.K., 2015. "An experimental investigation of performance-emission trade off characteristics of a CI engine using hydrogen as dual fuel," Energy, Elsevier, vol. 85(C), pages 569-585.
    12. George Mallouppas & Elias A. Yfantis & Charalambos Frantzis & Theodoros Zannis & Petros G. Savva, 2022. "The Effect of Hydrogen Addition on the Pollutant Emissions of a Marine Internal Combustion Engine Genset," Energies, MDPI, vol. 15(19), pages 1-13, September.
    13. Chakraborty, Amitav & Biswas, Srijit & Kakati, Dipankar & Banerjee, Rahul, 2022. "Leveraging hydrogen as the low reactive component in the optimization of the PPCI-RCCI transition regimes in an existing diesel engine under varying injection phasing and reactivity stratification str," Energy, Elsevier, vol. 244(PA).
    14. Yilmaz, I.T. & Gumus, M., 2018. "Effects of hydrogen addition to the intake air on performance and emissions of common rail diesel engine," Energy, Elsevier, vol. 142(C), pages 1104-1113.
    15. Akcay, Mehmet & Yilmaz, Ilker Turgut & Feyzioglu, Ahmet, 2020. "Effect of hydrogen addition on performance and emission characteristics of a common-rail CI engine fueled with diesel/waste cooking oil biodiesel blends," Energy, Elsevier, vol. 212(C).
    16. Nageswara Rao Gangolu & Bala Rama Krishna Chunchu & Abshalomu Yallamati & Radha Krishna Gopidesi, 2022. "Assessment of diesel engine characteristics by using soybean oil as a biofuel," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 7579-7592, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:1:p:328-334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.