IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v33y2008i7p1703-1708.html
   My bibliography  Save this article

Performance assessment of a solar still using blackened surface and thermocol insulation

Author

Listed:
  • Sahoo, B.B.
  • Sahoo, N.
  • Mahanta, P.
  • Borbora, L.
  • Kalita, P.
  • Saha, U.K.

Abstract

Fluoride contaminated drinking water is a severe problem in many parts of the world because of fluoride-related health hazards, which are considered to be a major environmental problem today. The present work is aimed at utilizing solar energy for removal of fluoride from drinking water by using a “solar still”. Also tests have been conducted with the “solar still” to find out hourly output rate and “still efficiencies” with various test matrixes. It is observed that the distillate from “solar still” showed a fluoride reduction of 92–96%. Further, the efficiency of “solar still” got increased by 11% when capacity of water in the solar basin was raised from 10 to 20L. Upon suitable modification of the solar basin with appropriate base liner and insulation, this efficiency of the “solar still” is found to be further increased by 6% with a 20L basin capacity.

Suggested Citation

  • Sahoo, B.B. & Sahoo, N. & Mahanta, P. & Borbora, L. & Kalita, P. & Saha, U.K., 2008. "Performance assessment of a solar still using blackened surface and thermocol insulation," Renewable Energy, Elsevier, vol. 33(7), pages 1703-1708.
  • Handle: RePEc:eee:renene:v:33:y:2008:i:7:p:1703-1708
    DOI: 10.1016/j.renene.2007.09.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148107002856
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2007.09.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yadav, Y.P. & Yadav, A.K. & Anwar, N. & Eames, P.C. & Norton, B., 1996. "An asymmetric line-axis compound parabolic concentrating single basin solar still," Renewable Energy, Elsevier, vol. 9(1), pages 737-740.
    2. Farid, Mohammed & Hamad, Faik, 1993. "Performance of a single-basin solar still," Renewable Energy, Elsevier, vol. 3(1), pages 75-83.
    3. Abdel-Rehim, Zeinab S. & Lasheen, Ashraf, 2005. "Improving the performance of solar desalination systems," Renewable Energy, Elsevier, vol. 30(13), pages 1955-1971.
    4. Yaghoubi, M.A. & Sabzevari, A., 1996. "Calculation of the hourly output of a solar still for various cities in Iran," Renewable Energy, Elsevier, vol. 7(4), pages 427-435.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nayi, Kuldeep H. & Modi, Kalpesh V., 2018. "Pyramid solar still: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 136-148.
    2. Yadav, Saurabh & Sudhakar, K., 2015. "Different domestic designs of solar stills: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 718-731.
    3. Fadl A. Essa & AbdelKader Abdullah & Hasan Sh. Majdi & Ali Basem & Hayder A. Dhahad & Zakaria M. Omara & Suha A. Mohammed & Wissam H. Alawee & Amged Al Ezzi & Talal Yusaf, 2022. "Parameters Affecting the Efficiency of Solar Stills—Recent Review," Sustainability, MDPI, vol. 14(17), pages 1-58, August.
    4. Maddah, Hisham A. & Bassyouni, M. & Abdel-Aziz, M.H. & Zoromba, M. Sh & Al-Hossainy, A.F., 2020. "Performance estimation of a mini-passive solar still via machine learning," Renewable Energy, Elsevier, vol. 162(C), pages 489-503.
    5. Kaviti, Ajay Kumar & Yadav, Akhilesh & Shukla, Amit, 2016. "Inclined solar still designs: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 429-451.
    6. Rashidi, Saman & Bovand, Masoud & Rahbar, Nader & Esfahani, Javad Abolfazli, 2018. "Steps optimization and productivity enhancement in a nanofluid cascade solar still," Renewable Energy, Elsevier, vol. 118(C), pages 536-545.
    7. Ahmed Ghazy & Raid Alrowais, 2022. "Experimental Performance of Single-Slope Basin Solar Still Coupled with a Humidification–Dehumidification Cycle," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    8. Sivakumar, V. & Ganapathy Sundaram, E., 2013. "Improvement techniques of solar still efficiency: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 246-264.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prakash, P. & Velmurugan, V., 2015. "Parameters influencing the productivity of solar stills – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 585-609.
    2. Mohd Fazly Yusof & Mohd Remy Rozainy Mohd Arif Zainol & Andrei Victor Sandu & Ali Riahi & Nor Azazi Zakaria & Syafiq Shaharuddin & Mohd Sharizal Abdul Aziz & Norazian Mohamed Noor & Petrica Vizureanu , 2022. "Clean Water Production Enhancement through the Integration of Small-Scale Solar Stills with Solar Dish Concentrators (SDCs)—A Review," Sustainability, MDPI, vol. 14(9), pages 1-27, April.
    3. Dev, Rahul & Abdul-Wahab, Sabah A. & Tiwari, G.N., 2011. "Performance study of the inverted absorber solar still with water depth and total dissolved solid," Applied Energy, Elsevier, vol. 88(1), pages 252-264, January.
    4. Madhlopa, A. & Johnstone, C., 2009. "Numerical study of a passive solar still with separate condenser," Renewable Energy, Elsevier, vol. 34(7), pages 1668-1677.
    5. Ali Riahi & Nor Azazi Zakaria & Mohamed Hasnain Isa & Khamaruzaman Wan Yusof & Balbir Singh Mahinder Singh & Zahiraniza Mustaffa & Husna Takaijudin, 2019. "Performance investigation of a solar still having polythene film cover and black painted stainless steel basin integrated with a photovoltaic module–direct current heater," Energy & Environment, , vol. 30(8), pages 1521-1535, December.
    6. Elango, C. & Gunasekaran, N. & Sampathkumar, K., 2015. "Thermal models of solar still—A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 856-911.
    7. Kalidasa Murugavel, K. & Sivakumar, S. & Riaz Ahamed, J. & Chockalingam, Kn.K.S.K. & Srithar, K., 2010. "Single basin double slope solar still with minimum basin depth and energy storing materials," Applied Energy, Elsevier, vol. 87(2), pages 514-523, February.
    8. Kaviti, Ajay Kumar & Yadav, Akhilesh & Shukla, Amit, 2016. "Inclined solar still designs: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 429-451.
    9. Tsilingiris, P.T., 2011. "The glazing temperature measurement in solar stills – Errors and implications on performance evaluation," Applied Energy, Elsevier, vol. 88(12), pages 4936-4944.
    10. Om Prakash & Asim Ahmad & Anil Kumar & Rajeshwari Chatterjee & Somnath Chattopadhyaya & Shubham Sharma & Aman Sharma & Changhe Li & Elsayed Mohamed Tag Eldin, 2022. "Performance Analysis, and Economic-Feasibility Evaluation of Single-Slope Single-Basin Domestic Solar Still under Different Water-Depths," Energies, MDPI, vol. 15(22), pages 1-15, November.
    11. Obai Younis & Ahmed Kadhim Hussein & Mohammed El Hadi Attia & Hakim S. Sultan Aljibori & Lioua Kolsi & Hussein Togun & Bagh Ali & Aissa Abderrahmane & Khanyaluck Subkrajang & Anuwat Jirawattanapanit, 2022. "Comprehensive Review on Solar Stills—Latest Developments and Overview," Sustainability, MDPI, vol. 14(16), pages 1-59, August.
    12. Dsilva Winfred Rufuss, D. & Iniyan, S. & Suganthi, L. & Davies, P.A., 2016. "Solar stills: A comprehensive review of designs, performance and material advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 464-496.
    13. Mohamed, A.S.A. & Shahdy, Abanob G. & Mohamed, Hany A. & Ahmed, M. Salem, 2023. "A comprehensive review of the vacuum solar still systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    14. Vishwanath Kumar, P. & Kumar, Anil & Prakash, Om & Kaviti, Ajay Kumar, 2015. "Solar stills system design: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 153-181.
    15. Sivakumar, V. & Ganapathy Sundaram, E., 2013. "Improvement techniques of solar still efficiency: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 246-264.
    16. Dsilva Winfred Rufuss, D. & Arulvel, S. & Anil Kumar, V. & Davies, P.A. & Arunkumar, T. & Sathyamurthy, Ravishankar & Kabeel, A.E. & Anand Vishwanath, M. & Sai Charan Reddy, D. & Dutta, Amandeep & Agr, 2022. "Combined effects of composite thermal energy storage and magnetic field to enhance productivity in solar desalination," Renewable Energy, Elsevier, vol. 181(C), pages 219-234.
    17. Kabeel, A.E. & Abdelgaied, Mohamed & Eisa, Amr, 2019. "Effect of graphite mass concentrations in a mixture of graphite nanoparticles and paraffin wax as hybrid storage materials on performances of solar still," Renewable Energy, Elsevier, vol. 132(C), pages 119-128.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:33:y:2008:i:7:p:1703-1708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.