IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v31y2006i9p1343-1354.html
   My bibliography  Save this article

Characteristics of a highly efficient propeller type small wind turbine with a diffuser

Author

Listed:
  • Matsushima, Toshio
  • Takagi, Shinya
  • Muroyama, Seiichi

Abstract

We studied the improved effects a diffuser had on the output power of small wind turbine systems, aiming to introduce these systems to radio relay stations as an independent power supply system. A frustum-shaped diffuser was chosen from an economical standpoint and wind speed distribution. The effect the diffuser's shape had on the wind speed was analyzed by simulation and showed that the wind speed in the diffuser was greatly influenced by the length and expansion angle of the diffuser, and maximum wind speed increased 1.7 times with the selection of the appropriate diffuser shape. The wind speed in the diffuser was fastest near the diffuser's entrance. We conducted field tests using a real examination device with a diffuser and confirmed that the output power of the wind power generator increased by up to 2.4 times compared to that of a conventional turbine. Moreover, it was confirmed that the diffuser was especially useful where the wind direction was constant.

Suggested Citation

  • Matsushima, Toshio & Takagi, Shinya & Muroyama, Seiichi, 2006. "Characteristics of a highly efficient propeller type small wind turbine with a diffuser," Renewable Energy, Elsevier, vol. 31(9), pages 1343-1354.
  • Handle: RePEc:eee:renene:v:31:y:2006:i:9:p:1343-1354
    DOI: 10.1016/j.renene.2005.07.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148105002144
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2005.07.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bet, F & Grassmann, H, 2003. "Upgrading conventional wind turbines," Renewable Energy, Elsevier, vol. 28(1), pages 71-78.
    2. Grassmann, H. & Bet, F. & Cabras, G. & Ceschia, M. & Cobai, D. & DelPapa, C., 2003. "A partially static turbine—first experimental results," Renewable Energy, Elsevier, vol. 28(11), pages 1779-1785.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bontempo, R. & Manna, M., 2016. "Effects of the duct thrust on the performance of ducted wind turbines," Energy, Elsevier, vol. 99(C), pages 274-287.
    2. Refaie, Abdelaziz G. & Abdel Hameed, H.S. & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2021. "Qualitative and quantitative assessments of an Archimedes Spiral Wind Turbine performance augmented by A concentrator," Energy, Elsevier, vol. 231(C).
    3. Mann, Harjeet S. & Singh, Pradeep K., 2020. "Energy recovery ducted turbine (ERDT) system for chimney flue gases - A CFD based analysis to study the effect of number of blade and diffuser angle," Energy, Elsevier, vol. 213(C).
    4. Nunes, Matheus M. & Brasil Junior, Antonio C.P. & Oliveira, Taygoara F., 2020. "Systematic review of diffuser-augmented horizontal-axis turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Liu, Jie & Song, Mengxuan & Chen, Kai & Wu, Bingheng & Zhang, Xing, 2016. "An optimization methodology for wind lens profile using Computational Fluid Dynamics simulation," Energy, Elsevier, vol. 109(C), pages 602-611.
    6. Nardecchia, Fabio & Groppi, Daniele & Astiaso Garcia, Davide & Bisegna, Fabio & de Santoli, Livio, 2021. "A new concept for a mini ducted wind turbine system," Renewable Energy, Elsevier, vol. 175(C), pages 610-624.
    7. Chong, W.T. & Poh, S.C. & Fazlizan, A. & Yip, S.Y. & Chang, C.K. & Hew, W.P., 2013. "Early development of an energy recovery wind turbine generator for exhaust air system," Applied Energy, Elsevier, vol. 112(C), pages 568-575.
    8. Janesh N. Mohanan & Kumaravel Sundaramoorthy & Ashok Sankaran, 2021. "Performance Improvement of a Low-Power Wind Turbine Using Conical Sections," Energies, MDPI, vol. 14(17), pages 1-21, August.
    9. Chong, W.T. & Yip, S.Y. & Fazlizan, A. & Poh, S.C. & Hew, W.P. & Tan, E.P. & Lim, T.S., 2014. "Design of an exhaust air energy recovery wind turbine generator for energy conservation in commercial buildings," Renewable Energy, Elsevier, vol. 67(C), pages 252-256.
    10. Wang, Wen-Xue & Matsubara, Terutake & Hu, Junfeng & Odahara, Satoru & Nagai, Tomoyuki & Karasutani, Takashi & Ohya, Yuji, 2015. "Experimental investigation into the influence of the flanged diffuser on the dynamic behavior of CFRP blade of a shrouded wind turbine," Renewable Energy, Elsevier, vol. 78(C), pages 386-397.
    11. Anbarsooz, M. & Amiri, M. & Rashidi, I., 2019. "A novel curtain design to enhance the aerodynamic performance of Invelox: A steady-RANS numerical simulation," Energy, Elsevier, vol. 168(C), pages 207-221.
    12. Masaō Ashtine & Richard Bello & Kaz Higuchi, 2016. "Feasibility of Small Wind Turbines in Ontario: Integrating Power Curves with Wind Trends," Resources, MDPI, vol. 5(4), pages 1-14, December.
    13. Nikolić, Vlastimir & Petković, Dalibor & Shamshirband, Shahaboddin & Ćojbašić, Žarko, 2015. "Adaptive neuro-fuzzy estimation of diffuser effects on wind turbine performance," Energy, Elsevier, vol. 89(C), pages 324-333.
    14. Kardous, M. & Chaker, R. & Aloui, F. & Nasrallah, S. Ben, 2013. "On the dependence of an empty flanged diffuser performance on flange height: Numerical simulations and PIV visualizations," Renewable Energy, Elsevier, vol. 56(C), pages 123-128.
    15. Refaie, Abdelaziz G. & Hameed, H.S. Abdel & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2022. "Comparative investigation of the aerodynamic performance for several Shrouded Archimedes Spiral Wind Turbines," Energy, Elsevier, vol. 239(PC).
    16. Ahmadi Asl, Hamid & Kamali Monfared, Reza & Rad, Manouchehr, 2017. "Experimental investigation of blade number and design effects for a ducted wind turbine," Renewable Energy, Elsevier, vol. 105(C), pages 334-343.
    17. Ansari, M. & Nobari, M.R.H. & Amani, E., 2019. "Determination of pitch angles and wind speeds ranges to improve wind turbine performance when using blade tip plates," Renewable Energy, Elsevier, vol. 140(C), pages 957-969.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grassmann, H. & Bet, F. & Ceschia, M. & Ganis, M.L., 2004. "On the physics of partially static turbines," Renewable Energy, Elsevier, vol. 29(4), pages 491-499.
    2. Leloudas, Stavros N. & Lygidakis, Georgios N. & Eskantar, Alexandros I. & Nikolos, Ioannis K., 2020. "A robust methodology for the design optimization of diffuser augmented wind turbine shrouds," Renewable Energy, Elsevier, vol. 150(C), pages 722-742.
    3. Gaden, David L.F. & Bibeau, Eric L., 2010. "A numerical investigation into the effect of diffusers on the performance of hydro kinetic turbines using a validated momentum source turbine model," Renewable Energy, Elsevier, vol. 35(6), pages 1152-1158.
    4. Hu, Ssu-Yuan & Cheng, Jung-Ho, 2008. "Innovatory designs for ducted wind turbines," Renewable Energy, Elsevier, vol. 33(7), pages 1491-1498.
    5. Kuang, Limin & Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Zhang, Kai & Zhao, Yongsheng & Bao, Yan, 2022. "Wind-capture-accelerate device for performance improvement of vertical-axis wind turbines: External diffuser system," Energy, Elsevier, vol. 239(PB).
    6. Saleem, Arslan & Kim, Man-Hoe, 2020. "Aerodynamic performance optimization of an airfoil-based airborne wind turbine using genetic algorithm," Energy, Elsevier, vol. 203(C).
    7. Chong, W.T. & Gwani, M. & Shamshirband, S. & Muzammil, W.K. & Tan, C.J. & Fazlizan, A. & Poh, S.C. & Petković, Dalibor & Wong, K.H., 2016. "Application of adaptive neuro-fuzzy methodology for performance investigation of a power-augmented vertical axis wind turbine," Energy, Elsevier, vol. 102(C), pages 630-636.
    8. Joselin Herbert, G.M. & Iniyan, S. & Sreevalsan, E. & Rajapandian, S., 2007. "A review of wind energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1117-1145, August.
    9. Rahmatian, Mohammad Ali & Hashemi Tari, Pooyan & Mojaddam, Mohammad & Majidi, Sahand, 2022. "Numerical and experimental study of the ducted diffuser effect on improving the aerodynamic performance of a micro horizontal axis wind turbine," Energy, Elsevier, vol. 245(C).
    10. Jun-Feng Hu & Wen-Xue Wang, 2015. "Upgrading a Shrouded Wind Turbine with a Self-Adaptive Flanged Diffuser," Energies, MDPI, vol. 8(6), pages 1-19, June.
    11. Keramat Siavash, Nemat & Najafi, G. & Tavakkoli Hashjin, Teymour & Ghobadian, Barat & Mahmoodi, Esmail, 2020. "Mathematical modeling of a horizontal axis shrouded wind turbine," Renewable Energy, Elsevier, vol. 146(C), pages 856-866.
    12. Manganhar, Abdul Latif & Rajpar, Altaf Hussain & Luhur, Muhammad Ramzan & Samo, Saleem Raza & Manganhar, Mehtab, 2019. "Performance analysis of a savonius vertical axis wind turbine integrated with wind accelerating and guiding rotor house," Renewable Energy, Elsevier, vol. 136(C), pages 512-520.
    13. Mann, Harjeet S. & Singh, Pradeep K., 2020. "Energy recovery ducted turbine (ERDT) system for chimney flue gases - A CFD based analysis to study the effect of number of blade and diffuser angle," Energy, Elsevier, vol. 213(C).
    14. Xu, Bin & Ma, Qiyu & Huang, Diangui, 2021. "Research on energy harvesting properties of a diffuser-augmented flapping wing," Renewable Energy, Elsevier, vol. 180(C), pages 271-280.
    15. Grassmann, H. & Bet, F. & Cabras, G. & Ceschia, M. & Cobai, D. & DelPapa, C., 2003. "A partially static turbine—first experimental results," Renewable Energy, Elsevier, vol. 28(11), pages 1779-1785.
    16. Anbarsooz, M. & Amiri, M. & Rashidi, I., 2019. "A novel curtain design to enhance the aerodynamic performance of Invelox: A steady-RANS numerical simulation," Energy, Elsevier, vol. 168(C), pages 207-221.
    17. Niebuhr, C.M. & van Dijk, M. & Neary, V.S. & Bhagwan, J.N., 2019. "A review of hydrokinetic turbines and enhancement techniques for canal installations: Technology, applicability and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    18. Bontempo, R. & Manna, M., 2020. "Diffuser augmented wind turbines: Review and assessment of theoretical models," Applied Energy, Elsevier, vol. 280(C).
    19. Wang, Wen-Xue & Matsubara, Terutake & Hu, Junfeng & Odahara, Satoru & Nagai, Tomoyuki & Karasutani, Takashi & Ohya, Yuji, 2015. "Experimental investigation into the influence of the flanged diffuser on the dynamic behavior of CFRP blade of a shrouded wind turbine," Renewable Energy, Elsevier, vol. 78(C), pages 386-397.
    20. Chong, W.T. & Pan, K.C. & Poh, S.C. & Fazlizan, A. & Oon, C.S. & Badarudin, A. & Nik-Ghazali, N., 2013. "Performance investigation of a power augmented vertical axis wind turbine for urban high-rise application," Renewable Energy, Elsevier, vol. 51(C), pages 388-397.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:31:y:2006:i:9:p:1343-1354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.