IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v51y2013icp388-397.html
   My bibliography  Save this article

Performance investigation of a power augmented vertical axis wind turbine for urban high-rise application

Author

Listed:
  • Chong, W.T.
  • Pan, K.C.
  • Poh, S.C.
  • Fazlizan, A.
  • Oon, C.S.
  • Badarudin, A.
  • Nik-Ghazali, N.

Abstract

A shrouded wind turbine system has a number of potential advantages over the conventional wind turbine. A novel power-augmentation-guide-vane (PAGV) that surrounds a Sistan wind turbine was designed to improve the wind rotor performance by increasing the on-coming wind speed and guiding it to an optimum flow angle before it interacts with the rotor blades. The integration of the PAGV into the 3-in-1 wind, solar and rain water harvester on high-rise buildings has been illustrated. A particular concern related to public safety is minimized when the wind turbine is contained inside the PAGV and noise pollution can be reduced due to the enclosure. Besides, the design of the PAGV that blends into the building architecture can be aesthetic as well. Moreover, a mesh can be mounted around the PAGV to prevent the bird-strike problem. From the wind tunnel testing measurements where the wind turbine is under free-running condition (only rotor inertia and bearing friction were applied), the wind rotor rotational speed (with the PAGV) was increased by 75.16%. Meanwhile, a computational fluid dynamics (CFD) simulation shows that the rotor torque was increased by 2.88 times with the introduction of the PAGV. Through a semi-empirical method, the power output increment of the rotor with the PAGV was 5.8 times at the wind speed of 3 m/s. Also, the flow vector visualization (CFD) shows that a larger area of upstream flow was induced through the rotor with the PAGV.

Suggested Citation

  • Chong, W.T. & Pan, K.C. & Poh, S.C. & Fazlizan, A. & Oon, C.S. & Badarudin, A. & Nik-Ghazali, N., 2013. "Performance investigation of a power augmented vertical axis wind turbine for urban high-rise application," Renewable Energy, Elsevier, vol. 51(C), pages 388-397.
  • Handle: RePEc:eee:renene:v:51:y:2013:i:c:p:388-397
    DOI: 10.1016/j.renene.2012.09.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112006040
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.09.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grant, Andrew & Johnstone, Cameron & Kelly, Nick, 2008. "Urban wind energy conversion: The potential of ducted turbines," Renewable Energy, Elsevier, vol. 33(6), pages 1157-1163.
    2. Eriksson, Sandra & Bernhoff, Hans & Leijon, Mats, 2008. "Evaluation of different turbine concepts for wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1419-1434, June.
    3. Yuji Ohya & Takashi Karasudani, 2010. "A Shrouded Wind Turbine Generating High Output Power with Wind-lens Technology," Energies, MDPI, vol. 3(4), pages 1-16, March.
    4. Elhadidy, M.A. & Shaahid, S.M., 2000. "Parametric study of hybrid (wind + solar + diesel) power generating systems," Renewable Energy, Elsevier, vol. 21(2), pages 129-139.
    5. Müller, Gerald & Jentsch, Mark F. & Stoddart, Euan, 2009. "Vertical axis resistance type wind turbines for use in buildings," Renewable Energy, Elsevier, vol. 34(5), pages 1407-1412.
    6. Franković, Bernard & Vrsalović, Ivan, 2001. "New high profitable wind turbines," Renewable Energy, Elsevier, vol. 24(3), pages 491-499.
    7. Howell, Robert & Qin, Ning & Edwards, Jonathan & Durrani, Naveed, 2010. "Wind tunnel and numerical study of a small vertical axis wind turbine," Renewable Energy, Elsevier, vol. 35(2), pages 412-422.
    8. Anyi, Martin & Kirke, Brian & Ali, Sam, 2010. "Remote community electrification in Sarawak, Malaysia," Renewable Energy, Elsevier, vol. 35(7), pages 1609-1613.
    9. Altan, Burçin Deda & Atılgan, Mehmet, 2010. "The use of a curtain design to increase the performance level of a Savonius wind rotors," Renewable Energy, Elsevier, vol. 35(4), pages 821-829.
    10. Hu, Ssu-Yuan & Cheng, Jung-Ho, 2008. "Innovatory designs for ducted wind turbines," Renewable Energy, Elsevier, vol. 33(7), pages 1491-1498.
    11. Xie, Kaigui & Billinton, Roy, 2011. "Energy and reliability benefits of wind energy conversion systems," Renewable Energy, Elsevier, vol. 36(7), pages 1983-1988.
    12. Grassmann, H. & Bet, F. & Cabras, G. & Ceschia, M. & Cobai, D. & DelPapa, C., 2003. "A partially static turbine—first experimental results," Renewable Energy, Elsevier, vol. 28(11), pages 1779-1785.
    13. Akella, A.K. & Saini, R.P. & Sharma, M.P., 2009. "Social, economical and environmental impacts of renewable energy systems," Renewable Energy, Elsevier, vol. 34(2), pages 390-396.
    14. da Graça Carvalho, Maria & Bonifacio, Matteo & Dechamps, Pierre, 2011. "Building a low carbon society," Energy, Elsevier, vol. 36(4), pages 1842-1847.
    15. Swift-Hook, Donald T., 2010. "Grid-connected intermittent renewables are the last to be stored," Renewable Energy, Elsevier, vol. 35(9), pages 1967-1969.
    16. Chong, W.T. & Naghavi, M.S. & Poh, S.C. & Mahlia, T.M.I. & Pan, K.C., 2011. "Techno-economic analysis of a wind–solar hybrid renewable energy system with rainwater collection feature for urban high-rise application," Applied Energy, Elsevier, vol. 88(11), pages 4067-4077.
    17. Kaldellis, J. K., 2002. "Optimum autonomous wind-power system sizing for remote consumers, using long-term wind speed data," Applied Energy, Elsevier, vol. 71(3), pages 215-233, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grönman, Aki & Backman, Jari & Hansen-Haug, Markus & Laaksonen, Mikko & Alkki, Markku & Aura, Pekka, 2018. "Experimental and numerical analysis of vaned wind turbine performance and flow phenomena," Energy, Elsevier, vol. 159(C), pages 827-841.
    2. Guo, Lukai & Wang, Hao, 2022. "Non-intrusive movable energy harvesting devices: Materials, designs, and their prospective uses on transportation infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    3. Ahmad Fazlizan & Wen Tong Chong & Sook Yee Yip & Wooi Ping Hew & Sin Chew Poh, 2015. "Design and Experimental Analysis of an Exhaust Air Energy Recovery Wind Turbine Generator," Energies, MDPI, vol. 8(7), pages 1-19, June.
    4. Chong, W.T. & Gwani, M. & Shamshirband, S. & Muzammil, W.K. & Tan, C.J. & Fazlizan, A. & Poh, S.C. & Petković, Dalibor & Wong, K.H., 2016. "Application of adaptive neuro-fuzzy methodology for performance investigation of a power-augmented vertical axis wind turbine," Energy, Elsevier, vol. 102(C), pages 630-636.
    5. Alina Wilke & Zhiwei Shen & Matthias Ritter, 2021. "How Much Can Small-Scale Wind Energy Production Contribute to Energy Supply in Cities? A Case Study of Berlin," Energies, MDPI, vol. 14(17), pages 1-20, September.
    6. Mauro, S. & Brusca, S. & Lanzafame, R. & Messina, M., 2019. "CFD modeling of a ducted Savonius wind turbine for the evaluation of the blockage effects on rotor performance," Renewable Energy, Elsevier, vol. 141(C), pages 28-39.
    7. Oscar Garcia & Alain Ulazia & Mario del Rio & Sheila Carreno-Madinabeitia & Andoni Gonzalez-Arceo, 2019. "An Energy Potential Estimation Methodology and Novel Prototype Design for Building-Integrated Wind Turbines," Energies, MDPI, vol. 12(10), pages 1-21, May.
    8. Jaewook Lee & Jeongsu Park & Hyung-Jo Jung & Jiyoung Park, 2017. "Renewable Energy Potential by the Application of a Building Integrated Photovoltaic and Wind Turbine System in Global Urban Areas," Energies, MDPI, vol. 10(12), pages 1-20, December.
    9. Seyedsaeed Tabatabaeikia & Nik Nazri Bin Nik-Ghazali & Wen Tong Chong & Behzad Shahizare & Ahmad Fazlizan & Alireza Esmaeilzadeh & Nima Izadyar, 2016. "A Comparative Computational Fluid Dynamics Study on an Innovative Exhaust Air Energy Recovery Wind Turbine Generator," Energies, MDPI, vol. 9(5), pages 1-19, May.
    10. Chong, W.T. & Yip, S.Y. & Fazlizan, A. & Poh, S.C. & Hew, W.P. & Tan, E.P. & Lim, T.S., 2014. "Design of an exhaust air energy recovery wind turbine generator for energy conservation in commercial buildings," Renewable Energy, Elsevier, vol. 67(C), pages 252-256.
    11. Chong, Wen-Tong & Muzammil, Wan Khairul & Wong, Kok-Hoe & Wang, Chin-Tsan & Gwani, Mohammed & Chu, Yung-Jeh & Poh, Sin-Chew, 2017. "Cross axis wind turbine: Pushing the limit of wind turbine technology with complementary design," Applied Energy, Elsevier, vol. 207(C), pages 78-95.
    12. Liu, W.Y. & Tang, B.P. & Han, J.G. & Lu, X.N. & Hu, N.N. & He, Z.Z., 2015. "The structure healthy condition monitoring and fault diagnosis methods in wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 466-472.
    13. Jeongsu Park & Hyung-Jo Jung & Seung-Woo Lee & Jiyoung Park, 2015. "A New Building-Integrated Wind Turbine System Utilizing the Building," Energies, MDPI, vol. 8(10), pages 1-25, October.
    14. Daniel Micallef & Gerard Van Bussel, 2018. "A Review of Urban Wind Energy Research: Aerodynamics and Other Challenges," Energies, MDPI, vol. 11(9), pages 1-27, August.
    15. Hamdan, A. & Mustapha, F. & Ahmad, K.A. & Mohd Rafie, A.S., 2014. "A review on the micro energy harvester in Structural Health Monitoring (SHM) of biocomposite material for Vertical Axis Wind Turbine (VAWT) system: A Malaysia perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 23-30.
    16. Tan Woan Wen & C Palanichamy & Gobbi Ramasamy, 2019. "Small Wind Turbines as Partial Solution for Energy Sustainability of Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 257-266.
    17. Wong, Kok Hoe & Chong, Wen Tong & Sukiman, Nazatul Liana & Poh, Sin Chew & Shiah, Yui-Chuin & Wang, Chin-Tsan, 2017. "Performance enhancements on vertical axis wind turbines using flow augmentation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 904-921.
    18. Grönman, Aki & Tiainen, Jonna & Jaatinen-Värri, Ahti, 2019. "Experimental and analytical analysis of vaned savonius turbine performance under different operating conditions," Applied Energy, Elsevier, vol. 250(C), pages 864-872.
    19. Murthy, K.S.R. & Rahi, O.P., 2017. "A comprehensive review of wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1320-1342.
    20. Zahra Sefidgar & Amir Ahmadi Joneidi & Ahmad Arabkoohsar, 2023. "A Comprehensive Review on Development and Applications of Cross-Flow Wind Turbines," Sustainability, MDPI, vol. 15(5), pages 1-39, March.
    21. Toja-Silva, Francisco & Colmenar-Santos, Antonio & Castro-Gil, Manuel, 2013. "Urban wind energy exploitation systems: Behaviour under multidirectional flow conditions—Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 364-378.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toja-Silva, Francisco & Colmenar-Santos, Antonio & Castro-Gil, Manuel, 2013. "Urban wind energy exploitation systems: Behaviour under multidirectional flow conditions—Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 364-378.
    2. Wong, Kok Hoe & Chong, Wen Tong & Sukiman, Nazatul Liana & Poh, Sin Chew & Shiah, Yui-Chuin & Wang, Chin-Tsan, 2017. "Performance enhancements on vertical axis wind turbines using flow augmentation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 904-921.
    3. Nikolić, Vlastimir & Petković, Dalibor & Shamshirband, Shahaboddin & Ćojbašić, Žarko, 2015. "Adaptive neuro-fuzzy estimation of diffuser effects on wind turbine performance," Energy, Elsevier, vol. 89(C), pages 324-333.
    4. Chong, W.T. & Gwani, M. & Shamshirband, S. & Muzammil, W.K. & Tan, C.J. & Fazlizan, A. & Poh, S.C. & Petković, Dalibor & Wong, K.H., 2016. "Application of adaptive neuro-fuzzy methodology for performance investigation of a power-augmented vertical axis wind turbine," Energy, Elsevier, vol. 102(C), pages 630-636.
    5. Hesami, Ali & Nikseresht, Amir H., 2023. "Towards development and optimization of the Savonius wind turbine incorporated with a wind-lens," Energy, Elsevier, vol. 274(C).
    6. Momeni, Farhang & Sabzpoushan, Seyedali & Valizadeh, Reza & Morad, Mohammad Reza & Liu, Xun & Ni, Jun, 2019. "Plant leaf-mimetic smart wind turbine blades by 4D printing," Renewable Energy, Elsevier, vol. 130(C), pages 329-351.
    7. Manganhar, Abdul Latif & Rajpar, Altaf Hussain & Luhur, Muhammad Ramzan & Samo, Saleem Raza & Manganhar, Mehtab, 2019. "Performance analysis of a savonius vertical axis wind turbine integrated with wind accelerating and guiding rotor house," Renewable Energy, Elsevier, vol. 136(C), pages 512-520.
    8. Daniel Micallef & Gerard Van Bussel, 2018. "A Review of Urban Wind Energy Research: Aerodynamics and Other Challenges," Energies, MDPI, vol. 11(9), pages 1-27, August.
    9. Tummala, Abhishiktha & Velamati, Ratna Kishore & Sinha, Dipankur Kumar & Indraja, V. & Krishna, V. Hari, 2016. "A review on small scale wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1351-1371.
    10. Seyedsaeed Tabatabaeikia & Nik Nazri Bin Nik-Ghazali & Wen Tong Chong & Behzad Shahizare & Ahmad Fazlizan & Alireza Esmaeilzadeh & Nima Izadyar, 2016. "A Comparative Computational Fluid Dynamics Study on an Innovative Exhaust Air Energy Recovery Wind Turbine Generator," Energies, MDPI, vol. 9(5), pages 1-19, May.
    11. Rolland, S.A. & Thatcher, M. & Newton, W. & Williams, A.J. & Croft, T.N. & Gethin, D.T. & Cross, M., 2013. "Benchmark experiments for simulations of a vertical axis wind turbine," Applied Energy, Elsevier, vol. 111(C), pages 1183-1194.
    12. Rolland, S. & Newton, W. & Williams, A.J. & Croft, T.N. & Gethin, D.T. & Cross, M., 2013. "Simulations technique for the design of a vertical axis wind turbine device with experimental validation," Applied Energy, Elsevier, vol. 111(C), pages 1195-1203.
    13. Xiaohang Wang & Wentong Chong & Kokhoe Wong & Liphuat Saw & Sinchew Poh & Saihin Lai & Chin-Tsan Wang, 2018. "Preliminary Performance Tests and Simulation of a V-Shape Roof Guide Vane Mounted on an Eco-Roof System," Energies, MDPI, vol. 11(10), pages 1-33, October.
    14. Hamdan, A. & Mustapha, F. & Ahmad, K.A. & Mohd Rafie, A.S., 2014. "A review on the micro energy harvester in Structural Health Monitoring (SHM) of biocomposite material for Vertical Axis Wind Turbine (VAWT) system: A Malaysia perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 23-30.
    15. Chong, W.T. & Fazlizan, A. & Poh, S.C. & Pan, K.C. & Hew, W.P. & Hsiao, F.B., 2013. "The design, simulation and testing of an urban vertical axis wind turbine with the omni-direction-guide-vane," Applied Energy, Elsevier, vol. 112(C), pages 601-609.
    16. Soledad Le Clainche & Esteban Ferrer, 2018. "A Reduced Order Model to Predict Transient Flows around Straight Bladed Vertical Axis Wind Turbines," Energies, MDPI, vol. 11(3), pages 1-24, March.
    17. Aslam Bhutta, Muhammad Mahmood & Hayat, Nasir & Farooq, Ahmed Uzair & Ali, Zain & Jamil, Sh. Rehan & Hussain, Zahid, 2012. "Vertical axis wind turbine – A review of various configurations and design techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1926-1939.
    18. Hosseini, S. Rasoul & Ganji, Davoud Domiri, 2020. "A novel design of nozzle-diffuser to enhance performance of INVELOX wind turbine," Energy, Elsevier, vol. 198(C).
    19. Ahmad Fazlizan & Wen Tong Chong & Sook Yee Yip & Wooi Ping Hew & Sin Chew Poh, 2015. "Design and Experimental Analysis of an Exhaust Air Energy Recovery Wind Turbine Generator," Energies, MDPI, vol. 8(7), pages 1-19, June.
    20. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:51:y:2013:i:c:p:388-397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.