IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipds0960148124019554.html
   My bibliography  Save this article

The effect of operation modes on the thermal performance of a novel multi-tubular phase change material-filled earth-air heat exchanger

Author

Listed:
  • Ren, Zhili
  • Ren, Yucheng
  • Zhou, Tiecheng
  • Xiao, Yimin
  • Zeng, Zhen

Abstract

The phase change material (PCM)-filled earth-air heat exchanger (PAHE) represents a technology aimed at reducing energy consumption in outdoor air pretreatment. This study develops a two-dimensional numerical model of the proposed multi-tubular PCM-filled earth-air heat exchanger using the finite difference method, with a computational program implemented in MATLAB. The model's accuracy is validated against experimental data. The results indicate that the proposed system exhibits superior performance overall during the four-month operation in Chongqing, China, achieving a maximum temperature drop of 5.26 °C during the nine-day investigation period. Furthermore, the operating modes (Conditions 3, 4, and 5), when combined with night purging, enhance the cooling performance and temperature drop of the proposed system, while the liquid fraction of the PCM is distributed more uniformly throughout the daily cycle. The soil and PCM units in condition 5 exhibited the least thermal accumulation and the highest coefficients of performance during the nine-day examination period. The findings of this study enhance the understanding of the impact of operating modes on the thermal performance of PAHE systems.

Suggested Citation

  • Ren, Zhili & Ren, Yucheng & Zhou, Tiecheng & Xiao, Yimin & Zeng, Zhen, 2024. "The effect of operation modes on the thermal performance of a novel multi-tubular phase change material-filled earth-air heat exchanger," Renewable Energy, Elsevier, vol. 237(PD).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pd:s0960148124019554
    DOI: 10.1016/j.renene.2024.121887
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124019554
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121887?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Minaei, Asgar & Talee, Zahra & Safikhani, Hamed & Ghaebi, Hadi, 2021. "Thermal resistance capacity model for transient simulation of Earth-Air Heat Exchangers," Renewable Energy, Elsevier, vol. 167(C), pages 558-567.
    2. Li, Hui & Ni, Long & Yao, Yang & Sun, Cheng, 2020. "Annual performance experiments of an earth-air heat exchanger fresh air-handling unit in severe cold regions: Operation, economic and greenhouse gas emission analyses," Renewable Energy, Elsevier, vol. 146(C), pages 25-37.
    3. Gao, Xiangkui & Li, Na & Xiao, Yimin & Zhang, Zujing & Sun, Meng & Gao, Penghui, 2024. "Thermal storage process of phase change materials under high humidity and laminar natural convection condition: Prediction model and sensitivity analysis," Energy, Elsevier, vol. 286(C).
    4. Gao, Xiangkui & Xiao, Yimin & Gao, Penghui, 2022. "Thermal potential improvement of an earth-air heat exchanger (EAHE) by employing backfilling for deep underground emergency ventilation," Energy, Elsevier, vol. 250(C).
    5. Misra, Rohit & Bansal, Vikas & Agrawal, Ghanshyam Das & Mathur, Jyotirmay & Aseri, Tarun K., 2013. "CFD analysis based parametric study of derating factor for Earth Air Tunnel Heat Exchanger," Applied Energy, Elsevier, vol. 103(C), pages 266-277.
    6. Wei, Haibin & Yang, Dong & Wang, Jilibo & Du, Jinhui, 2020. "Field experiments on the cooling capability of earth-to-air heat exchangers in hot and humid climate," Applied Energy, Elsevier, vol. 276(C).
    7. Ozgener, Leyla & Ozgener, Onder, 2010. "Energetic performance test of an underground air tunnel system for greenhouse heating," Energy, Elsevier, vol. 35(10), pages 4079-4085.
    8. Mathur, Anuj & Surana, Ankit Kumar & Mathur, Sanjay, 2016. "Numerical investigation of the performance and soil temperature recovery of an EATHE system under intermittent operations," Renewable Energy, Elsevier, vol. 95(C), pages 510-521.
    9. Wei, Haibin & Yang, Dong & Du, Jinhui & Guo, Xin, 2021. "Field experiments on the effects of an earth-to-air heat exchanger on the indoor thermal environment in summer and winter for a typical hot-summer and cold-winter region," Renewable Energy, Elsevier, vol. 167(C), pages 530-541.
    10. Yuan, Yanping & Gao, Xiangkui & Wu, Hongwei & Zhang, Zujin & Cao, Xiaoling & Sun, Liangliang & Yu, Nanyang, 2017. "Coupled cooling method and application of latent heat thermal energy storage combined with pre-cooling of envelope: Method and model development," Energy, Elsevier, vol. 119(C), pages 817-833.
    11. Niu, Fuxin & Yu, Yuebin & Yu, Daihong & Li, Haorong, 2015. "Heat and mass transfer performance analysis and cooling capacity prediction of earth to air heat exchanger," Applied Energy, Elsevier, vol. 137(C), pages 211-221.
    12. Qin, Di & Liu, Zhengxuan & Zhou, Yuekuan & Yan, Zhongjun & Chen, Dachuan & Zhang, Guoqiang, 2021. "Dynamic performance of a novel air-soil heat exchanger coupling with diversified energy storage components—modelling development, experimental verification, parametrical design and robust operation," Renewable Energy, Elsevier, vol. 167(C), pages 542-557.
    13. Ahmed, S.F. & Khan, M.M.K. & Amanullah, M.T.O. & Rasul, M.G. & Hassan, N.M.S., 2021. "A parametric analysis of the cooling performance of vertical earth-air heat exchanger in a subtropical climate," Renewable Energy, Elsevier, vol. 172(C), pages 350-367.
    14. Mathur, Anuj & Priyam, & Mathur, Sanjay & Agrawal, G.D. & Mathur, Jyotirmay, 2017. "Comparative study of straight and spiral earth air tunnel heat exchanger system operated in cooling and heating modes," Renewable Energy, Elsevier, vol. 108(C), pages 474-487.
    15. Liu, Zhengxuan & Sun, Pengchen & Xie, Mingjing & Zhou, Yuekuan & He, Yingdong & Zhang, Guoqiang & Chen, Dachuan & Li, Shuisheng & Yan, Zhongjun & Qin, Di, 2021. "Multivariant optimization and sensitivity analysis of an experimental vertical earth-to-air heat exchanger system integrating phase change material with Taguchi method," Renewable Energy, Elsevier, vol. 173(C), pages 401-414.
    16. Singh, Ramkishore & Sawhney, R.L. & Lazarus, I.J. & Kishore, V.V.N., 2018. "Recent advancements in earth air tunnel heat exchanger (EATHE) system for indoor thermal comfort application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2162-2185.
    17. Ren, Zhili & Gao, Xiangkui & Wang, Tao & Xiao, Yimin & Zeng, Zhen & Chen, Long & Pang, Yantao & Ma, Yunlong & Xiong, Qian & Chen, Senlin & Ren, Yucheng, 2024. "Numerical study on thermal storage and exothermic characteristics of subway station fresh air shaft surrounding rock," Energy, Elsevier, vol. 293(C).
    18. H.Ali, Mohammed & Kurjak, Zoltan & Beke, Janos, 2023. "Investigation of earth air heat exchangers functioning in arid locations using Matlab/Simulink," Renewable Energy, Elsevier, vol. 209(C), pages 632-643.
    19. Ozgener, Leyla & Ozgener, Onder, 2010. "An experimental study of the exergetic performance of an underground air tunnel system for greenhouse cooling," Renewable Energy, Elsevier, vol. 35(12), pages 2804-2811.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yue, Yingjun & Yan, Zengfeng & Ni, Pingan & Lei, Fuming & Yao, Shanshan, 2024. "Machine learning-based multi-performance prediction and analysis of Earth-Air Heat Exchanger," Renewable Energy, Elsevier, vol. 227(C).
    2. Wang, Tao & Ma, Mengru & Ren, Zhili & Yuan, Xiaoqing & Gao, Xiangkui & Xiao, Yimin, 2024. "Numerical analysis of heat and mass transfer in separated ventilation of deeply buried long air intake tunnels," Energy, Elsevier, vol. 304(C).
    3. Akhtari, Mohammad Reza & Shayegh, Iman & Karimi, Nader, 2020. "Techno-economic assessment and optimization of a hybrid renewable earth - air heat exchanger coupled with electric boiler, hydrogen, wind and PV configurations," Renewable Energy, Elsevier, vol. 148(C), pages 839-851.
    4. H.Ali, Mohammed & Kurjak, Zoltan & Beke, Janos, 2023. "Investigation of earth air heat exchangers functioning in arid locations using Matlab/Simulink," Renewable Energy, Elsevier, vol. 209(C), pages 632-643.
    5. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Halkos, George & Paravantis, John & Makridis, Sofoklis & Papaefthimiou, Spiros, 2022. "Applications of earth-to-air heat exchangers: A holistic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    6. Hegazy, Anwar & Farid, Mohammed & Subiantoro, Alison & Norris, Stuart, 2022. "Sustainable cooling strategies to minimize water consumption in a greenhouse in a hot arid region," Agricultural Water Management, Elsevier, vol. 274(C).
    7. Ren, Zhili & Gao, Xiangkui & Wang, Tao & Xiao, Yimin & Zeng, Zhen & Chen, Long & Pang, Yantao & Ma, Yunlong & Xiong, Qian & Chen, Senlin & Ren, Yucheng, 2024. "Numerical study on thermal storage and exothermic characteristics of subway station fresh air shaft surrounding rock," Energy, Elsevier, vol. 293(C).
    8. Singh, Ramkishore & Sawhney, R.L. & Lazarus, I.J. & Kishore, V.V.N., 2018. "Recent advancements in earth air tunnel heat exchanger (EATHE) system for indoor thermal comfort application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2162-2185.
    9. Qi, Xin & Yang, Dong & Guo, Xin & Chen, Feilong & An, Farun & Wei, Haibin, 2024. "Theoretical modelling and experimental evaluation of thermal performance of a combined earth-to-air heat exchanger and return air hybrid system," Renewable Energy, Elsevier, vol. 236(C).
    10. Łukasz Amanowicz & Janusz Wojtkowiak, 2021. "Comparison of Single- and Multipipe Earth-to-Air Heat Exchangers in Terms of Energy Gains and Electricity Consumption: A Case Study for the Temperate Climate of Central Europe," Energies, MDPI, vol. 14(24), pages 1-28, December.
    11. Hanna Koshlak, 2025. "A Review of Earth-Air Heat Exchangers: From Fundamental Principles to Hybrid Systems with Renewable Energy Integration," Energies, MDPI, vol. 18(5), pages 1-35, February.
    12. Qin, Di & Liu, Zhengxuan & Zhou, Yuekuan & Yan, Zhongjun & Chen, Dachuan & Zhang, Guoqiang, 2021. "Dynamic performance of a novel air-soil heat exchanger coupling with diversified energy storage components—modelling development, experimental verification, parametrical design and robust operation," Renewable Energy, Elsevier, vol. 167(C), pages 542-557.
    13. Yener, Deniz & Ozgener, Onder & Ozgener, Leyla, 2017. "Prediction of soil temperatures for shallow geothermal applications in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 71-77.
    14. Lebbihiat, Nacer & Atia, Abdelmalek & Arıcı, Müslüm & Meneceur, Noureddine & Hadjadj, Abdessamia & Chetioui, Youcef, 2022. "Thermal performance analysis of helical ground-air heat exchanger under hot climate: In situ measurement and numerical simulation," Energy, Elsevier, vol. 254(PC).
    15. Agrawal, Kamal Kumar & Misra, Rohit & Yadav, Tejpal & Agrawal, Ghanshyam Das & Jamuwa, Doraj Kamal, 2018. "Experimental study to investigate the effect of water impregnation on thermal performance of earth air tunnel heat exchanger for summer cooling in hot and arid climate," Renewable Energy, Elsevier, vol. 120(C), pages 255-265.
    16. Li, Hui & Ni, Long & Liu, Guang & Zhao, Zisang & Yao, Yang, 2019. "Feasibility study on applications of an Earth-air Heat Exchanger (EAHE) for preheating fresh air in severe cold regions," Renewable Energy, Elsevier, vol. 133(C), pages 1268-1284.
    17. Wei, Haibin & Yang, Dong & Guo, Yuanhao & Chen, Mengqian, 2018. "Coupling of earth-to-air heat exchangers and buoyancy for energy-efficient ventilation of buildings considering dynamic thermal behavior and cooling/heating capacity," Energy, Elsevier, vol. 147(C), pages 587-602.
    18. Paolo Maria Congedo & Caterina Lorusso & Maria Grazia De Giorgi & Riccardo Marti & Delia D’Agostino, 2016. "Horizontal Air-Ground Heat Exchanger Performance and Humidity Simulation by Computational Fluid Dynamic Analysis," Energies, MDPI, vol. 9(11), pages 1, November.
    19. Adriana Greco & Edison Gundabattini & Darius Gnanaraj Solomon & Raja Singh Rassiah & Claudia Masselli, 2022. "A Review on Geothermal Renewable Energy Systems for Eco-Friendly Air-Conditioning," Energies, MDPI, vol. 15(15), pages 1-17, July.
    20. Elombo Motoula, Smaël Magloire & Gomat, Landry Jean Pierre & Lin, Jian & M’passi Mabiala, Bernard, 2022. "Continuum approach to evaluate humidity transportation by an Earth to Air Energy Exchanger," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pd:s0960148124019554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.