IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v70y2017icp71-77.html
   My bibliography  Save this article

Prediction of soil temperatures for shallow geothermal applications in Turkey

Author

Listed:
  • Yener, Deniz
  • Ozgener, Onder
  • Ozgener, Leyla

Abstract

In this study, soil temperatures at different depths in Turkey's different regions were investigated theoretically. Soil temperature data are critical for different research interests such as ecology, biology, technique processes, forestry, agriculture, energy, food sector, ground heat exchanger applications, thermal energy storage applications, and so forth. This investigation gives information related to the prediction of soil temperature's dependence with depth and time especially for shallow geothermal applications. Soil temperature values depend on a great deal of varied parameters such as thermal conductivity, short term climatic conditions and moisture content. The main issue is that despite these temperatures are extremely important values, they can not be obtained in a short time. Due to this reason, we study a mathematical model related to the prediction of soil temperature. Within this context, 81 cities and their approximately 300.000 data, both, monthly air and soil temperatures between 1960 and 2015 were studied and finally seven regions in Turkey were investigated and final average soil temperature values were achieved. Measured data taken from the Izmir State Meteorological Station, and predicted soil temperatures at depths of 5cm, 10cm, 20cm, 50cm, and 100cm were analyzed for each region in Turkey according to data obtained fifty years ago. Finally, at depths of 5cm, 10cm, 20cm, 50cm and 100cm, the maximum average percentage errors in Turkey were 16%, 14.8%, 13.5%, 14.4%, 13.9% respectively. In conclusion, we evaluate the relationship between ambient air temperatures and soil temperatures in terms of depths from 5 to 3000cm.

Suggested Citation

  • Yener, Deniz & Ozgener, Onder & Ozgener, Leyla, 2017. "Prediction of soil temperatures for shallow geothermal applications in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 71-77.
  • Handle: RePEc:eee:rensus:v:70:y:2017:i:c:p:71-77
    DOI: 10.1016/j.rser.2016.11.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211630805X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.11.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsilingiridis, G. & Papakostas, K., 2014. "Investigating the relationship between air and ground temperature variations in shallow depths in northern Greece," Energy, Elsevier, vol. 73(C), pages 1007-1016.
    2. Ozgener, Leyla, 2011. "A review on the experimental and analytical analysis of earth to air heat exchanger (EAHE) systems in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4483-4490.
    3. Quick, Hubert & Michael, Joachim & Arslan, Ulvi & Huber, Heiko, 2013. "Geothermal application in low-enthalpy regions," Renewable Energy, Elsevier, vol. 49(C), pages 133-136.
    4. Ozgener, Leyla & Ozgener, Onder, 2010. "Energetic performance test of an underground air tunnel system for greenhouse heating," Energy, Elsevier, vol. 35(10), pages 4079-4085.
    5. Mathur, Anuj & Surana, Ankit Kumar & Mathur, Sanjay, 2016. "Numerical investigation of the performance and soil temperature recovery of an EATHE system under intermittent operations," Renewable Energy, Elsevier, vol. 95(C), pages 510-521.
    6. You, Tian & Wu, Wei & Shi, Wenxing & Wang, Baolong & Li, Xianting, 2016. "An overview of the problems and solutions of soil thermal imbalance of ground-coupled heat pumps in cold regions," Applied Energy, Elsevier, vol. 177(C), pages 515-536.
    7. Rubio-Maya, C. & Ambríz Díaz, V.M. & Pastor Martínez, E. & Belman-Flores, J.M., 2015. "Cascade utilization of low and medium enthalpy geothermal resources − A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 689-716.
    8. Liao, Xiaolin & Su, Zhihua & Liu, Guodong & Zotarelli, Lincoln & Cui, Yuqi & Snodgrass, Crystal, 2016. "Impact of soil moisture and temperature on potato production using seepage and center pivot irrigation," Agricultural Water Management, Elsevier, vol. 165(C), pages 230-236.
    9. Maerefat, M. & Haghighi, A.P., 2010. "Passive cooling of buildings by using integrated earth to air heat exchanger and solar chimney," Renewable Energy, Elsevier, vol. 35(10), pages 2316-2324.
    10. Ozgener, Leyla & Ozgener, Onder, 2010. "An experimental study of the exergetic performance of an underground air tunnel system for greenhouse cooling," Renewable Energy, Elsevier, vol. 35(12), pages 2804-2811.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Guanshan & Ding, Xiaoming & Li, Tianhua & Pu, Wenyang & Lou, Wei & Hou, Jialin, 2020. "Dynamic energy balance model of a glass greenhouse: An experimental validation and solar energy analysis," Energy, Elsevier, vol. 198(C).
    2. Sung-Woo Cho & Pyeongchan Ihm, 2018. "Development of a Simplified Regression Equation for Predicting Underground Temperature Distributions in Korea," Energies, MDPI, vol. 11(11), pages 1-18, October.
    3. Mohammad Taghi Sattari & Anca Avram & Halit Apaydin & Oliviu Matei, 2020. "Soil Temperature Estimation with Meteorological Parameters by Using Tree-Based Hybrid Data Mining Models," Mathematics, MDPI, vol. 8(9), pages 1-21, August.
    4. Xing, Lu & Li, Liheng & Gong, Jiakang & Ren, Chen & Liu, Jiangyan & Chen, Huanxin, 2018. "Daily soil temperatures predictions for various climates in United States using data-driven model," Energy, Elsevier, vol. 160(C), pages 430-440.
    5. Cai, Wanlong & Wang, Fenghao & Chen, Chaofan & Chen, Shuang & Liu, Jun & Ren, Zhanli & Shao, Haibing, 2022. "Long-term performance evaluation for deep borehole heat exchanger array under different soil thermal properties and system layouts," Energy, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akhtari, Mohammad Reza & Shayegh, Iman & Karimi, Nader, 2020. "Techno-economic assessment and optimization of a hybrid renewable earth - air heat exchanger coupled with electric boiler, hydrogen, wind and PV configurations," Renewable Energy, Elsevier, vol. 148(C), pages 839-851.
    2. Yıldız, Ahmet & Ozgener, Onder & Ozgener, Leyla, 2012. "Energetic performance analysis of a solar photovoltaic cell (PV) assisted closed loop earth-to-air heat exchanger for solar greenhouse cooling: An experimental study for low energy architecture in Aeg," Renewable Energy, Elsevier, vol. 44(C), pages 281-287.
    3. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Halkos, George & Paravantis, John & Makridis, Sofoklis & Papaefthimiou, Spiros, 2022. "Applications of earth-to-air heat exchangers: A holistic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    4. Singh, Ramkishore & Sawhney, R.L. & Lazarus, I.J. & Kishore, V.V.N., 2018. "Recent advancements in earth air tunnel heat exchanger (EATHE) system for indoor thermal comfort application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2162-2185.
    5. Paolo Maria Congedo & Caterina Lorusso & Maria Grazia De Giorgi & Riccardo Marti & Delia D’Agostino, 2016. "Horizontal Air-Ground Heat Exchanger Performance and Humidity Simulation by Computational Fluid Dynamic Analysis," Energies, MDPI, vol. 9(11), pages 1-14, November.
    6. Ozgener, Leyla, 2011. "A review on the experimental and analytical analysis of earth to air heat exchanger (EAHE) systems in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4483-4490.
    7. Ozgener, Onder & Ozgener, Leyla & Goswami, D. Yogi, 2017. "Seven years energetic and exergetic monitoring for vertical and horizontal EAHE assisted agricultural building heating," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 175-179.
    8. Bisoniya, Trilok Singh & Kumar, Anil & Baredar, Prashant, 2013. "Experimental and analytical studies of earth–air heat exchanger (EAHE) systems in India: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 238-246.
    9. Wei, Haibin & Yang, Dong & Guo, Yuanhao & Chen, Mengqian, 2018. "Coupling of earth-to-air heat exchangers and buoyancy for energy-efficient ventilation of buildings considering dynamic thermal behavior and cooling/heating capacity," Energy, Elsevier, vol. 147(C), pages 587-602.
    10. Hegazy, Anwar & Farid, Mohammed & Subiantoro, Alison & Norris, Stuart, 2022. "Sustainable cooling strategies to minimize water consumption in a greenhouse in a hot arid region," Agricultural Water Management, Elsevier, vol. 274(C).
    11. H.Ali, Mohammed & Kurjak, Zoltan & Beke, Janos, 2023. "Investigation of earth air heat exchangers functioning in arid locations using Matlab/Simulink," Renewable Energy, Elsevier, vol. 209(C), pages 632-643.
    12. Ozgener, Leyla, 2012. "Coefficient of performance (COP) analysis of geothermal district heating systems (GDHSs): Salihli GDHS case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1330-1334.
    13. Benhammou, Mohammed & Draoui, Belkacem, 2015. "Parametric study on thermal performance of earth-to-air heat exchanger used for cooling of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 348-355.
    14. Guo, Jinnan & Li, Angui & Che, Jigang & Ma, Yuanqing & Li, Jiaxing & Yin, Yifei & Che, Lunfei, 2024. "Exponential sinusoidal modelling and parameterizing studies for the air temperature waves during underground tunnel ventilation," Energy, Elsevier, vol. 288(C).
    15. Gan, Guohui, 2017. "Dynamic thermal simulation of horizontal ground heat exchangers for renewable heating and ventilation of buildings," Renewable Energy, Elsevier, vol. 103(C), pages 361-371.
    16. Chiam, Zhonglin & Papas, Ilias & Easwaran, Arvind & Alonso, Corinne & Estibals, Bruno, 2022. "Holistic optimization of the operation of a GCHP system: A case study on the ADREAM building in Toulouse, France," Applied Energy, Elsevier, vol. 321(C).
    17. Thainswemong Choudhury & Anil Misra, 2014. "Minimizing changing climate impact on buildings using easily and economically feasible earth to air heat exchanger technique," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(7), pages 947-954, October.
    18. Monghasemi, Nima & Vadiee, Amir, 2018. "A review of solar chimney integrated systems for space heating and cooling application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2714-2730.
    19. Agrawal, Kamal Kumar & Misra, Rohit & Yadav, Tejpal & Agrawal, Ghanshyam Das & Jamuwa, Doraj Kamal, 2018. "Experimental study to investigate the effect of water impregnation on thermal performance of earth air tunnel heat exchanger for summer cooling in hot and arid climate," Renewable Energy, Elsevier, vol. 120(C), pages 255-265.
    20. Qinggong Liu & Zhenyu Du & Yi Fan, 2018. "Heat and Mass Transfer Behavior Prediction and Thermal Performance Analysis of Earth-to-Air Heat Exchanger by Finite Volume Method," Energies, MDPI, vol. 11(6), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:70:y:2017:i:c:p:71-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.