IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v236y2024ics0960148124014861.html
   My bibliography  Save this article

Theoretical modelling and experimental evaluation of thermal performance of a combined earth-to-air heat exchanger and return air hybrid system

Author

Listed:
  • Qi, Xin
  • Yang, Dong
  • Guo, Xin
  • Chen, Feilong
  • An, Farun
  • Wei, Haibin

Abstract

To both alleviate thermal saturation in surrounding soil and avoid indoor air pollution caused by closed-loop earth-to-air heat exchanger (EAHE) systems, this study proposes a hybrid mode that combines EAHE and return air (RA), i.e., the EAHE-RA system. A theoretical model was proposed to predict the thermal performance of EAHE-RA systems considering both sensible and latent heat transfer inside the EAHE. Full-scale experiments on both open-loop EAHE system and EAHE-RA system were carried out. The results indicated that the average cooling capacity of EAHE in EAHE-RA system was decreased by 1202.8 W (43.82 %) in summer compared to open-loop EAHE system, while the average cooling capacity recovery of return air was 645.4 W. In winter, the average heating capacity of the EAHE of EAHE-RA system was decreased by 394.1 W (48.91 %), while the average heating capacity recovery of the return air was 1021.7 W. Theoretical predictions of EAHE outlet and indoor air temperature agree well with the measured ones in both summer and winter. Theoretical results indicated that the EAHE-RA system has lower/higher pipe wall temperatures in summer/winter than the open-loop EAHE does, indicating a lower thermal interference on surrounding soils and thus better durability.

Suggested Citation

  • Qi, Xin & Yang, Dong & Guo, Xin & Chen, Feilong & An, Farun & Wei, Haibin, 2024. "Theoretical modelling and experimental evaluation of thermal performance of a combined earth-to-air heat exchanger and return air hybrid system," Renewable Energy, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124014861
    DOI: 10.1016/j.renene.2024.121418
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124014861
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121418?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Minaei, Asgar & Talee, Zahra & Safikhani, Hamed & Ghaebi, Hadi, 2021. "Thermal resistance capacity model for transient simulation of Earth-Air Heat Exchangers," Renewable Energy, Elsevier, vol. 167(C), pages 558-567.
    2. Liu, Zhijian & Liu, Yuanwei & He, Bao-Jie & Xu, Wei & Jin, Guangya & Zhang, Xutao, 2019. "Application and suitability analysis of the key technologies in nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 329-345.
    3. Zhou, Xiao & Huang, Zhou & Scheuer, Bronte & Wang, Han & Zhou, Guoqing & Liu, Yu, 2023. "High-resolution estimation of building energy consumption at the city level," Energy, Elsevier, vol. 275(C).
    4. Wei, Haibin & Yang, Dong & Wang, Jilibo & Du, Jinhui, 2020. "Field experiments on the cooling capability of earth-to-air heat exchangers in hot and humid climate," Applied Energy, Elsevier, vol. 276(C).
    5. Bisoniya, Trilok Singh & Kumar, Anil & Baredar, Prashant, 2013. "Experimental and analytical studies of earth–air heat exchanger (EAHE) systems in India: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 238-246.
    6. Wei, Haibin & Yang, Dong & Du, Jinhui & Guo, Xin, 2021. "Field experiments on the effects of an earth-to-air heat exchanger on the indoor thermal environment in summer and winter for a typical hot-summer and cold-winter region," Renewable Energy, Elsevier, vol. 167(C), pages 530-541.
    7. Dey, Subhashish & Sreenivasulu, Anduri & Veerendra, G.T.N. & Rao, K. Venkateswara & Babu, P.S.S. Anjaneya, 2022. "Renewable energy present status and future potentials in India: An overview," Innovation and Green Development, Elsevier, vol. 1(1).
    8. Bordoloi, Namrata & Sharma, Aashish & Nautiyal, Himanshu & Goel, Varun, 2018. "An intense review on the latest advancements of Earth Air Heat Exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 261-280.
    9. Ahmed, S.F. & Khan, M.M.K. & Amanullah, M.T.O. & Rasul, M.G. & Hassan, N.M.S., 2021. "A parametric analysis of the cooling performance of vertical earth-air heat exchanger in a subtropical climate," Renewable Energy, Elsevier, vol. 172(C), pages 350-367.
    10. Bai, Yufu & Long, Tianhe & Li, Wuyan & Li, Yongcai & Liu, Shuli & Wang, Zhihao & Lu, Jun & Huang, Sheng, 2022. "Experimental investigation of natural ventilation characteristics of a solar chimney coupled with earth-air heat exchanger (SCEAHE) system in summer and winter," Renewable Energy, Elsevier, vol. 193(C), pages 1001-1018.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Zhili & Ren, Yucheng & Zhou, Tiecheng & Xiao, Yimin & Zeng, Zhen, 2024. "The effect of operation modes on the thermal performance of a novel multi-tubular phase change material-filled earth-air heat exchanger," Renewable Energy, Elsevier, vol. 237(PD).
    2. Yue, Yingjun & Yan, Zengfeng & Ni, Pingan & Lei, Fuming & Yao, Shanshan, 2024. "Machine learning-based multi-performance prediction and analysis of Earth-Air Heat Exchanger," Renewable Energy, Elsevier, vol. 227(C).
    3. H.Ali, Mohammed & Kurjak, Zoltan & Beke, Janos, 2023. "Investigation of earth air heat exchangers functioning in arid locations using Matlab/Simulink," Renewable Energy, Elsevier, vol. 209(C), pages 632-643.
    4. Elombo Motoula, Smaël Magloire & Gomat, Landry Jean Pierre & Lin, Jian & M’passi Mabiala, Bernard, 2022. "Continuum approach to evaluate humidity transportation by an Earth to Air Energy Exchanger," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    5. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Halkos, George & Paravantis, John & Makridis, Sofoklis & Papaefthimiou, Spiros, 2022. "Applications of earth-to-air heat exchangers: A holistic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    6. Łukasz Amanowicz & Janusz Wojtkowiak, 2021. "Comparison of Single- and Multipipe Earth-to-Air Heat Exchangers in Terms of Energy Gains and Electricity Consumption: A Case Study for the Temperate Climate of Central Europe," Energies, MDPI, vol. 14(24), pages 1-28, December.
    7. Mustaffa, Nur Kamaliah & Kudus, Sakhiah Abdul, 2022. "Challenges and way forward towards best practices of energy efficient building in Malaysia," Energy, Elsevier, vol. 259(C).
    8. Yu Cao & Cong Xu & Syahrul Nizam Kamaruzzaman & Nur Mardhiyah Aziz, 2022. "A Systematic Review of Green Building Development in China: Advantages, Challenges and Future Directions," Sustainability, MDPI, vol. 14(19), pages 1-29, September.
    9. Jinzhao Song & Qing Feng & Xiaoping Wang & Hanliang Fu & Wei Jiang & Baiyu Chen, 2018. "Spatial Association and Effect Evaluation of CO 2 Emission in the Chengdu-Chongqing Urban Agglomeration: Quantitative Evidence from Social Network Analysis," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    10. Zhang, Yuyang & Ma, Wenke & Du, Pengcheng & Li, Shaoting & Gao, Ke & Wang, Yuxuan & Liu, Yifei & Zhang, Bo & Yu, Dingyi & Zhang, Jingyi & Li, Yan, 2024. "Powering the future: Unraveling residential building characteristics for accurate prediction of total electricity consumption during summer heat," Applied Energy, Elsevier, vol. 376(PA).
    11. Liang, Shen & Zheng, Hongfei & Wang, Xuanlin & Ma, Xinglong & Zhao, Zhiyong, 2022. "Design and performance validation on a solar louver with concentrating-photovoltaic-thermal modules," Renewable Energy, Elsevier, vol. 191(C), pages 71-83.
    12. Chi, Fang'ai & Xu, Liming & Peng, Changhai, 2020. "Integration of completely passive cooling and heating systems with daylighting function into courtyard building towards energy saving," Applied Energy, Elsevier, vol. 266(C).
    13. Wang, Y. & Mauree, D. & Sun, Q. & Lin, H. & Scartezzini, J.L. & Wennersten, R., 2020. "A review of approaches to low-carbon transition of high-rise residential buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    14. Cuny, Mathias & Lapertot, Arnaud & Lin, Jian & Kadoch, Benjamin & Le Metayer, Olivier, 2020. "Multi-criteria optimization of an earth-air heat exchanger for different French climates," Renewable Energy, Elsevier, vol. 157(C), pages 342-352.
    15. Zahedi, Alireza & Rasmi, Elnaz & Ahmadi, Abolfazl & Kanani, Behzad, 2024. "Conceptual design of a novel sustainable hybrid renewable energy system based on biogas/molten carbonate fuel cell/water desalination for a building energy supply," Renewable Energy, Elsevier, vol. 237(PC).
    16. Diana D’Agostino & Francesco Esposito & Adriana Greco & Claudia Masselli & Francesco Minichiello, 2020. "Parametric Analysis on an Earth-to-Air Heat Exchanger Employed in an Air Conditioning System," Energies, MDPI, vol. 13(11), pages 1-24, June.
    17. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost," Energy, Elsevier, vol. 192(C).
    18. Li, Hui & Ni, Long & Liu, Guang & Zhao, Zisang & Yao, Yang, 2019. "Feasibility study on applications of an Earth-air Heat Exchanger (EAHE) for preheating fresh air in severe cold regions," Renewable Energy, Elsevier, vol. 133(C), pages 1268-1284.
    19. Zhou, Xiao & Huang, Zhou & Scheuer, Bronte & Wang, Han & Zhou, Guoqing & Liu, Yu, 2023. "High-resolution estimation of building energy consumption at the city level," Energy, Elsevier, vol. 275(C).
    20. Rafael Herrera-Limones & Ángel Luis León-Rodríguez & Álvaro López-Escamilla, 2019. "Solar Decathlon Latin America and Caribbean: Comfort and the Balance between Passive and Active Design," Sustainability, MDPI, vol. 11(13), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124014861. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.