IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipbs0960148124017245.html
   My bibliography  Save this article

Roles of lignin in pore development during activation of peach wood

Author

Listed:
  • Li, Chao
  • Gao, Bo
  • Pan, Zhihui
  • Liu, Yuxuan
  • Shao, Yuewen
  • Gao, Guoming
  • Guo, Yunyu
  • Zhang, Shu
  • Li, Bin
  • Hu, Xun

Abstract

Cellulose, hemicellulose, and lignin are major components in typical woody biomasses. They have varied reaction networks in activation and thus contribute to pore development in different ways. Removal of one component might significantly affect pore characteristics of resulting activated carbon (AC). This was investigated herein by activation of peach wood (PW), delignified peach wood (DLPW), lignin, and a mixture of lignin/DLPW with K2C2O4 at 800 °C. The results disclosed that delignification increased abundance of aliphatic structures relatively and enhanced mass transfer of volatiles and permeability of K2C2O4 through creating voids. These features together intensified cracking reactions in activation of delignified PW, enhancing bio-oil yield (60.9 vs 56.1 % from PW), diminishing production of AC (17.4 vs 20.2 % from PW), promoting pore development (1218.5 versus 1099.4 m2g-1 from PW), enlarging pore size of micropores and creating more mesopores and macropores in AC. This rendered the AC of superior performance for adsorption of phenol. Co-activation of DLPW and lignin suggested that reactions between DLPW-derived volatiles and lignin-derived char formed carbonaceous deposits that filled pores of AC, diminishing overall specific surface area. The characterization of the activation process with in-situ IR technique indicated that more intensive cracking reactions in activation of DLPW even hindered aromatization but facilitated pore development.

Suggested Citation

  • Li, Chao & Gao, Bo & Pan, Zhihui & Liu, Yuxuan & Shao, Yuewen & Gao, Guoming & Guo, Yunyu & Zhang, Shu & Li, Bin & Hu, Xun, 2024. "Roles of lignin in pore development during activation of peach wood," Renewable Energy, Elsevier, vol. 237(PB).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124017245
    DOI: 10.1016/j.renene.2024.121656
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124017245
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121656?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ha, Jeong-Myeong & Hwang, Kyung-Ran & Kim, Young-Min & Jae, Jungho & Kim, Kwang Ho & Lee, Hyung Won & Kim, Jae-Young & Park, Young-Kwon, 2019. "Recent progress in the thermal and catalytic conversion of lignin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 422-441.
    2. Imtiaz Anando, Ahmed & Ehsan, M Monjurul & Karim, Md Rezwanul & Bhuiyan, Arafat A. & Ahiduzzaman, Md & Karim, Azharul, 2023. "Thermochemical pretreatments to improve the fuel properties of rice husk: A review," Renewable Energy, Elsevier, vol. 215(C).
    3. Li, Chao & Jiang, Yuchen & Shao, Yuewen & Gao, Guoming & Fan, Mengjiao & Zhang, Lijun & Zhang, Shu & Xiang, Jun & Hu, Song & Wang, Yi & Hu, Xun, 2024. "Quantification of degree of interactions during co-pyrolysis of nine typical carbonaceous wastes," Renewable Energy, Elsevier, vol. 227(C).
    4. Ao, Supongsenla & Changmai, Bishwajit & Vanlalveni, Chhangte & Chhandama, Michael Van Lal & Wheatley, Andrew E.H. & Rokhum, Samuel Lalthazuala, 2024. "Biomass waste-derived catalysts for biodiesel production: Recent advances and key challenges," Renewable Energy, Elsevier, vol. 223(C).
    5. Østergaard, Poul Alberg & Duic, Neven & Kalogirou, Soteris, 2024. "Sustainable development using integrated energy systems and solar, biomass, wind, and wave technology," Renewable Energy, Elsevier, vol. 235(C).
    6. Pallarés Ranz, Javier & Gil, Antonia & Cortés, Cristóbal & Arauzo, Inmaculada, 2024. "Modeling of the evolution of the porous structure during a physical activation process for the production of activated biocarbon: A novel low conversion approach," Renewable Energy, Elsevier, vol. 224(C).
    7. Oliveira, Dyoni M. & Mota, Thatiane R. & Grandis, Adriana & de Morais, Gutierrez R. & de Lucas, Rosymar C. & Polizeli, Maria L.T.M. & Marchiosi, Rogério & Buckeridge, Marcos S. & Ferrarese-Filho, Osva, 2020. "Lignin plays a key role in determining biomass recalcitrance in forage grasses," Renewable Energy, Elsevier, vol. 147(P1), pages 2206-2217.
    8. Collard, François-Xavier & Blin, Joël, 2014. "A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 594-608.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Wei-Hsin & Lin, Bo-Jhih, 2016. "Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres," Energy, Elsevier, vol. 94(C), pages 569-578.
    2. Yang, Yuhan & Wang, Tiancheng & Hu, Hongyun & Yao, Dingding & Zou, Chan & Xu, Kai & Li, Xian & Yao, Hong, 2021. "Influence of partial components removal on pyrolysis behavior of lignocellulosic biowaste in molten salts," Renewable Energy, Elsevier, vol. 180(C), pages 616-625.
    3. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    4. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    5. Kluska, Jacek & Turzyński, Tomasz & Ochnio, Mateusz & Kardaś, Dariusz, 2020. "Characteristics of ash formation in the process of combustion of pelletised leather tannery waste and hardwood pellets," Renewable Energy, Elsevier, vol. 149(C), pages 1246-1253.
    6. Zhou, Man & Fakayode, Olugbenga Abiola & Ahmed Yagoub, Abu ElGasim & Ji, Qinghua & Zhou, Cunshan, 2022. "Lignin fractionation from lignocellulosic biomass using deep eutectic solvents and its valorization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    7. Qin, Fanzhi & Zhang, Chen & Zeng, Guangming & Huang, Danlian & Tan, Xiaofei & Duan, Abing, 2022. "Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    8. Sitek, Tomáš & Pospíšil, Jiří & Poláčik, Ján & Špiláček, Michal & Varbanov, Petar, 2019. "Fine combustion particles released during combustion of unit mass of beechwood," Renewable Energy, Elsevier, vol. 140(C), pages 390-396.
    9. Devasahayam, Sheila & Albijanic, Boris, 2024. "Predicting hydrogen production from co-gasification of biomass and plastics using tree based machine learning algorithms," Renewable Energy, Elsevier, vol. 222(C).
    10. Alam, Mahboob & Bhavanam, Anjireddy & Jana, Ashirbad & Viroja, Jaimin kumar S. & Peela, Nageswara Rao, 2020. "Co-pyrolysis of bamboo sawdust and plastic: Synergistic effects and kinetics," Renewable Energy, Elsevier, vol. 149(C), pages 1133-1145.
    11. Kawale, Harshal D. & Kishore, Nanda, 2019. "Production of hydrocarbons from a green algae (Oscillatoria) with exploration of its fuel characteristics over different reaction atmospheres," Energy, Elsevier, vol. 178(C), pages 344-355.
    12. Chen, Yu-Kai & Lin, Cheng-Han & Wang, Wei-Cheng, 2020. "The conversion of biomass into renewable jet fuel," Energy, Elsevier, vol. 201(C).
    13. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    14. Huang, Youwang & Wang, Haiyong & Zhang, Xinghua & Zhang, Qi & Wang, Chenguang & Ma, Longlong, 2022. "Accurate prediction of chemical exergy of technical lignins for exergy-based assessment on sustainable utilization processes," Energy, Elsevier, vol. 243(C).
    15. Kartal, Furkan & Dalbudak, Yağmur & Özveren, Uğur, 2023. "Prediction of thermal degradation of biopolymers in biomass under pyrolysis atmosphere by means of machine learning," Renewable Energy, Elsevier, vol. 204(C), pages 774-787.
    16. Oscar Araque & Nelson Arzola & Ivonne X. Cerón, 2024. "Microstructure and Mechanical Characterization of Rice Husks from the Tolima Region of Colombia," Resources, MDPI, vol. 13(1), pages 1-12, January.
    17. Jiang, Xuguang & Chen, Dandan & Ma, Zengyi & Yan, Jianhua, 2017. "Models for the combustion of single solid fuel particles in fluidized beds: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 410-431.
    18. Peter N. Ciesielski & M. Brennan Pecha & Vivek S. Bharadwaj & Calvin Mukarakate & G. Jeremy Leong & Branden Kappes & Michael F. Crowley & Seonah Kim & Thomas D. Foust & Mark R. Nimlos, 2018. "Advancing catalytic fast pyrolysis through integrated multiscale modeling and experimentation: Challenges, progress, and perspectives," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(4), July.
    19. Dong, Shengfei & Liu, Ziyu & Yang, Xiaoyi, 2024. "Exploration of hydrothermal liquefaction of multiple algae to improve bio-crude quality and carbohydrate utilization," Applied Energy, Elsevier, vol. 361(C).
    20. Brillard, A. & Brilhac, J.F., 2020. "Improvements of global models for the determination of the kinetic parameters associated to the thermal degradation of lignocellulosic materials under low heating rates," Renewable Energy, Elsevier, vol. 146(C), pages 1498-1509.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124017245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.