IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics0360544224015755.html
   My bibliography  Save this article

Dual NWP wind speed correction based on trend fusion and fluctuation clustering and its application in short-term wind power prediction

Author

Listed:
  • Yang, Mao
  • Che, Runqi
  • Yu, Xinnan
  • Su, Xin

Abstract

With the continuous growth of grid-connected installed capacity of wind power, the inevitable gap, volatility and randomness of wind power pose challenges to the stability of real-time operation of power system. Accurate wind power prediction (WPP) can effectively ensure the safe and stable operation of power system. At present, the main input of short-term power prediction based on data-driven model is numerical weather prediction (NWP), and its prediction accuracy leads to the failure to effectively improve the accuracy of short-term power prediction. To solve this problem, this paper proposes a dual NWP wind speed (WS) correction method based on trend fusion and fluctuation clustering. First, the WS trend is used to construct a new input feature, and the NWP WS error distribution is determined to establish a more correct and stable mapping relationship with the NWP WS error. Secondly, the error is decomposed by Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), and the trend and fluctuation components are defined by Pearson coefficient. The trend curve features in the short 24h period were extracted from the two dimensions of time and value, and the trend and fluctuation curve databases under different scenarios were formed by K-Medoids clustering. Finally, the trend component is modified by the Attention-GRU model, and the corresponding trend component is searched and matched from the database to correct the fluctuation component. The NWP WS is modified by the superposition of the two components and the short-term WPP is made. Two wind farms in Mengxi, China were used for example analysis, and the prediction accuracy was improved by 10 % and 13.1 % respectively, which demonstrated the effectiveness of the proposed method.

Suggested Citation

  • Yang, Mao & Che, Runqi & Yu, Xinnan & Su, Xin, 2024. "Dual NWP wind speed correction based on trend fusion and fluctuation clustering and its application in short-term wind power prediction," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015755
    DOI: 10.1016/j.energy.2024.131802
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224015755
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131802?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.