IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipcs0960148124017555.html
   My bibliography  Save this article

Photovoltaic to electrolysis off-grid green hydrogen production with DC–DC conversion

Author

Listed:
  • Renaudineau, Hugues
  • Llor, Ana M.
  • Hernandez, Matias S.
  • Concha, Diego
  • Wilson-Veas, Alan H.
  • Kouro, Samir

Abstract

Green hydrogen (H2), being the product of water electrolysis powered by renewable energy sources, is expected to be an energetic vector of major importance toward a more sustainable energy mix. In this context, photovoltaic (PV) -based H2 production is a key element, where power electronics technologies are critical to enable its development. In off-grid applications, designing DC–DC power electronics converters with high efficiency and high power density is really important since it can impact significantly the global performance of the H2 production system. In this work, a two-stage DC–DC power conversion system composed by an unregulated DCX converter and a regulated partial power converter is considered to increase the H2 production system efficiency. The DCX converter works in open-loop at resonant frequency with a high DC–DC conversion ratio. A partial power converter (PPC), which regulates only a fraction of the total power between its input and output terminals, represents a improvement in PV-to-H2 direct conversion, particularly since the PV panels do not require regulation from zero to nominal voltage, and in this work, is introduced for regulation of the DCX-based system, by optimizing the PV produced power through a maximum power point tracking (MPPT) algorithm along with the current control of the electrolyzer. A comparison with state-of-the-art converters show an important improvement of the proposed DCX with PPC regulated system. Compared to the solution with classical interleaved-buck pre-regulator, significant improvements in terms of efficiency for the whole range of operation are obtained, up to 2.5% higher with the proposed system. Experimental evaluation of the proposed PPC and DCX two stage converter for PV-powered electrolysis system is provided, validating its feasibility and interest for off-grid green hydrogen production application.

Suggested Citation

  • Renaudineau, Hugues & Llor, Ana M. & Hernandez, Matias S. & Concha, Diego & Wilson-Veas, Alan H. & Kouro, Samir, 2024. "Photovoltaic to electrolysis off-grid green hydrogen production with DC–DC conversion," Renewable Energy, Elsevier, vol. 237(PC).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124017555
    DOI: 10.1016/j.renene.2024.121687
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124017555
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121687?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Ningbo & Guo, Yanhua & Liu, Lu & Shao, Shuangquan, 2024. "Numerical assessment and optimization of photovoltaic-based hydrogen-oxygen Co-production energy system: A machine learning and multi-objective strategy," Renewable Energy, Elsevier, vol. 227(C).
    2. Liu, Xianyang & Zou, Jun & Long, Rui & Liu, Zhichun & Liu, Wei, 2023. "Variable period sequence control strategy for an off-grid photovoltaic-PEM electrolyzer hydrogen generation system," Renewable Energy, Elsevier, vol. 216(C).
    3. Karayel, G. Kubilay & Dincer, Ibrahim, 2024. "Green hydrogen production potential of Canada with solar energy," Renewable Energy, Elsevier, vol. 221(C).
    4. Yang, Jingze & Chi, Hetian & Cheng, Mohan & Dong, Mingqi & Li, Siwu & Yao, Hong, 2023. "Performance analysis of hydrogen supply using curtailed power from a solar-wind-storage power system," Renewable Energy, Elsevier, vol. 212(C), pages 1005-1019.
    5. James Gallagher, 2023. "Tracking hydrogen projects," Nature Energy, Nature, vol. 8(2), pages 107-108, February.
    6. Gu, Xufei & Ying, Zhi & Zheng, Xiaoyuan & Dou, Binlin & Cui, Guomin, 2023. "Photovoltaic-based energy system coupled with energy storage for all-day stable PEM electrolytic hydrogen production," Renewable Energy, Elsevier, vol. 209(C), pages 53-62.
    7. Jaime Wladimir Zapata & Samir Kouro & Gonzalo Carrasco & Hugues Renaudineau, 2018. "Step-Up Partial Power DC-DC Converters for Two-Stage PV Systems with Interleaved Current Performance," Energies, MDPI, vol. 11(2), pages 1-11, February.
    8. Zhu, Zheng & Liu, Xiangjie & Kong, Xiaobing & Ma, Lele & Lee, Kwang Y. & Xu, Yuping, 2024. "PV/Hydrogen DC microgrid control using distributed economic model predictive control," Renewable Energy, Elsevier, vol. 222(C).
    9. Mazzeo, Domenico & Herdem, Münür Sacit & Matera, Nicoletta & Wen, John Z., 2022. "Green hydrogen production: Analysis for different single or combined large-scale photovoltaic and wind renewable systems," Renewable Energy, Elsevier, vol. 200(C), pages 360-378.
    10. Irshad, Ahmad Shah & Ludin, Gul Ahmad & Masrur, Hasan & Ahmadi, Mikaeel & Yona, Atsushi & Mikhaylov, Alexey & Krishnan, Narayanan & Senjyu, Tomonobu, 2023. "Optimization of grid-photovoltaic and battery hybrid system with most technically efficient PV technology after the performance analysis," Renewable Energy, Elsevier, vol. 207(C), pages 714-730.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Yinglun & Su, Shangchun & Niu, Xiaoxuan & Song, Zhehui & Li, Wenjia, 2024. "A gradient porous transport layer enabling a high-performance proton-exchange membrane electrolysis cell," Renewable Energy, Elsevier, vol. 237(PC).
    2. Zhu, Zheng & Chen, Sian & Kong, Xiaobing & Ma, Lele & Liu, Xiangjie & Lee, Kwang Y., 2024. "A centralized EMPC scheme for PV-powered alkaline electrolyzer," Renewable Energy, Elsevier, vol. 229(C).
    3. Yi, Yin & Zhou, Yun & Feng, Donghan & Yin, Wenhang & Li, Hengjie & Yang, Qingliu, 2024. "Stability control and analysis of hydrogen production using a multi-terminal DC EV charging system with PV," Renewable Energy, Elsevier, vol. 234(C).
    4. Qiu, Yiwei & Zhou, Yi & Chen, Shi & Zang, Tianlei & Zhou, Buxiang, 2024. "Flexibility assessment and aggregation of alkaline electrolyzers considering dynamic process constraints for energy management of renewable power-to-hydrogen systems," Renewable Energy, Elsevier, vol. 235(C).
    5. Kariuki, Boniface Wainaina & Emam, Mohamed & Ookawara, Shinichi & Hassan, Hamdy, 2024. "New hybrid system of PV/T, solar collectors, PEM electrolyzer, and HDH for hydrogen and freshwater production: Seasonal performance investigation," Energy, Elsevier, vol. 312(C).
    6. Rezaei, Mostafa & Akimov, Alexandr & Gray, Evan Mac A., 2024. "Techno-economics of offshore wind-based dynamic hydrogen production," Applied Energy, Elsevier, vol. 374(C).
    7. Wang, Xiongzheng & Meng, Xin & Nie, Gongzhe & Li, Binghui & Yang, Haoran & He, Mingzhi, 2024. "Optimization of hydrogen production in multi-Electrolyzer systems: A novel control strategy for enhanced renewable energy utilization and Electrolyzer lifespan," Applied Energy, Elsevier, vol. 376(PB).
    8. Sun, Mingjia & Zhang, Yumeng & Liu, Luyao & Nian, Xingheng & Zhang, Hanfei & Duan, Liqiang, 2025. "Dynamic performance analysis of hydrogen production and hot standby dual-mode system via proton exchange membrane electrolyzer and phase change material-based heat storage," Applied Energy, Elsevier, vol. 377(PC).
    9. Cheng, Xiang & Lin, Jin & Zhang, Mingjun & Sha, Liandong & Yang, Bosen & Liu, Feng & Song, Yonghua, 2025. "Power controller design for electrolysis systems with DC/DC interface supporting fast dynamic operation: A model-based and experimental study," Applied Energy, Elsevier, vol. 378(PB).
    10. Dawahdeh, Ahmad I. & Al-Shdeifat, Raneem A. & Al-Nimr, Moh’d A., 2024. "Power-to-X system utilizing an advanced solar system integrated with a thermally regenerative electrochemical cycle," Energy, Elsevier, vol. 304(C).
    11. Gu, Xufei & Ying, Zhi & Zheng, Xiaoyuan & Dou, Binlin & Cui, Guomin, 2023. "Photovoltaic-based energy system coupled with energy storage for all-day stable PEM electrolytic hydrogen production," Renewable Energy, Elsevier, vol. 209(C), pages 53-62.
    12. Superchi, Francesco & Papi, Francesco & Mannelli, Andrea & Balduzzi, Francesco & Ferro, Francesco Maria & Bianchini, Alessandro, 2023. "Development of a reliable simulation framework for techno-economic analyses on green hydrogen production from wind farms using alkaline electrolyzers," Renewable Energy, Elsevier, vol. 207(C), pages 731-742.
    13. Jorge Rivera & Susana Ortega-Cisneros & Florentino Chavira, 2019. "Sliding Mode Output Regulation for a Boost Power Converter," Energies, MDPI, vol. 12(5), pages 1-17, March.
    14. Yu-Chen Liu & Ming-Cheng Chen & Chun-Yu Yang & Katherine A. Kim & Huang-Jen Chiu, 2018. "High-Efficiency Isolated Photovoltaic Microinverter Using Wide-Band Gap Switches for Standalone and Grid-Tied Applications," Energies, MDPI, vol. 11(3), pages 1-15, March.
    15. Lin, Jianhui & Gu, Yujiong & Wang, Zijie & Zhao, Ziliang & Zhu, Ping, 2024. "Operational characteristics of an integrated island energy system based on multi-energy complementarity," Renewable Energy, Elsevier, vol. 230(C).
    16. Makhsoos, Ashkan & Kandidayeni, Mohsen & Boulon, Loïc & Pollet, Bruno G., 2023. "A comparative analysis of single and modular proton exchange membrane water electrolyzers for green hydrogen production- a case study in Trois-Rivières," Energy, Elsevier, vol. 282(C).
    17. Xu, Shitian & Liu, Pan & Li, Xiao & Cheng, Qian & Liu, Zheyuan, 2023. "Deriving long-term operating rules of the hydro-wind-PV hybrid energy system considering electricity price," Renewable Energy, Elsevier, vol. 219(P1).
    18. Qi, Yunying & Xu, Xiao & Liu, Youbo & Pan, Li & Liu, Junyong & Hu, Weihao, 2024. "Intelligent energy management for an on-grid hydrogen refueling station based on dueling double deep Q network algorithm with NoisyNet," Renewable Energy, Elsevier, vol. 222(C).
    19. Rezaei, Mostafa & Akimov, Alexandr & Gray, Evan Mac A., 2024. "Levelised cost of dynamic green hydrogen production: A case study for Australia's hydrogen hubs," Applied Energy, Elsevier, vol. 370(C).
    20. Wang, Ningbo & Guo, Yanhua & Huang, Congqi & Tian, Bo & Shao, Shuangquan, 2025. "Multi-scale collaborative modeling and deep learning-based thermal prediction for air-cooled data centers: An innovative insight for thermal management," Applied Energy, Elsevier, vol. 377(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124017555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.