IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v235y2024ics0960148124013296.html
   My bibliography  Save this article

Flexibility assessment and aggregation of alkaline electrolyzers considering dynamic process constraints for energy management of renewable power-to-hydrogen systems

Author

Listed:
  • Qiu, Yiwei
  • Zhou, Yi
  • Chen, Shi
  • Zang, Tianlei
  • Zhou, Buxiang

Abstract

In the energy management of renewable power-to-hydrogen (ReP2H) systems, quantifying the flexibility of alkaline electrolyzers (AELs) to respond to fast load-tracking commands and maintain energy balance across various timescales is crucial. However, the flexibility of AELs is subject to electrochemical, and dynamic heat and mass transfer constraints, making them very different, both physically and mathematically, from conventional power system flexibility resources such as energy storage (ES) and electrical vehicles (EVs). Additionally, in large hydrogen plants (HPs), aggregating the flexibility of multiple AELs is necessary. Despite extensive flexibility-related research on power and integrated energy systems, work on the electrolyzers is limited. To address these gaps, this paper presents a flexibility assessment method for AELs. Considering comprehensive nonlinear dynamic process constraints, we establish a flexibility metric based on the maximal/minimal energy an AEL can provide within varying time windows. This metric is additive, facilitating the aggregation of multiple AELs within seconds. By comparing it with the energy demanded by regulatory commands, the feasibility of load-tracking control can be assessed without time-domain simulation. In cases of infeasibility, the cause and required compensation can also be interpreted. Case studies validate the proposed method, and key factors impacting the flexibility of AELs are quantitatively analyzed.

Suggested Citation

  • Qiu, Yiwei & Zhou, Yi & Chen, Shi & Zang, Tianlei & Zhou, Buxiang, 2024. "Flexibility assessment and aggregation of alkaline electrolyzers considering dynamic process constraints for energy management of renewable power-to-hydrogen systems," Renewable Energy, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124013296
    DOI: 10.1016/j.renene.2024.121261
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124013296
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121261?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karayel, G. Kubilay & Dincer, Ibrahim, 2024. "Green hydrogen production potential of Canada with solar energy," Renewable Energy, Elsevier, vol. 221(C).
    2. Genovese, Matteo & Fragiacomo, Petronilla, 2021. "Parametric technical-economic investigation of a pressurized hydrogen electrolyzer unit coupled with a storage compression system," Renewable Energy, Elsevier, vol. 180(C), pages 502-515.
    3. Li, Yangyang & Deng, Xintao & Zhang, Tao & Liu, Shenghui & Song, Lingjun & Yang, Fuyuan & Ouyang, Minggao & Shen, Xiaojun, 2023. "Exploration of the configuration and operation rule of the multi-electrolyzers hybrid system of large-scale alkaline water hydrogen production system," Applied Energy, Elsevier, vol. 331(C).
    4. Qiu, Yiwei & Zhou, Buxiang & Zang, Tianlei & Zhou, Yi & Chen, Shi & Qi, Ruomei & Li, Jiarong & Lin, Jin, 2023. "Extended load flexibility of utility-scale P2H plants: Optimal production scheduling considering dynamic thermal and HTO impurity effects," Renewable Energy, Elsevier, vol. 217(C).
    5. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    6. Li, Yangyang & Zhang, Tao & Deng, Xintao & Liu, Biao & Ma, Jugang & Yang, Fuyuan & Ouyang, Minggao, 2022. "Active pressure and flow rate control of alkaline water electrolyzer based on wind power prediction and 100% energy utilization in off-grid wind-hydrogen coupling system," Applied Energy, Elsevier, vol. 328(C).
    7. Liu, Xianyang & Zou, Jun & Long, Rui & Liu, Zhichun & Liu, Wei, 2023. "Variable period sequence control strategy for an off-grid photovoltaic-PEM electrolyzer hydrogen generation system," Renewable Energy, Elsevier, vol. 216(C).
    8. Qi, Ruomei & Li, Jiarong & Lin, Jin & Song, Yonghua & Wang, Jiepeng & Cui, Qiangqiang & Qiu, Yiwei & Tang, Ming & Wang, Jian, 2023. "Thermal modeling and controller design of an alkaline electrolysis system under dynamic operating conditions," Applied Energy, Elsevier, vol. 332(C).
    9. Jovan, David Jure & Dolanc, Gregor & Pregelj, Boštjan, 2022. "Utilization of excess water accumulation for green hydrogen production in a run-of-river hydropower plant," Renewable Energy, Elsevier, vol. 195(C), pages 780-794.
    10. Qiu, Xiaoyan & Zhang, Hang & Qiu, Yiwei & Zhou, Yi & Zang, Tianlei & Zhou, Buxiang & Qi, Ruomei & Lin, Jin & Wang, Jiepeng, 2023. "Dynamic parameter estimation of the alkaline electrolysis system combining Bayesian inference and adaptive polynomial surrogate models," Applied Energy, Elsevier, vol. 348(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Yiwei & Zhou, Buxiang & Zang, Tianlei & Zhou, Yi & Chen, Shi & Qi, Ruomei & Li, Jiarong & Lin, Jin, 2023. "Extended load flexibility of utility-scale P2H plants: Optimal production scheduling considering dynamic thermal and HTO impurity effects," Renewable Energy, Elsevier, vol. 217(C).
    2. Qiu, Xiaoyan & Zhang, Hang & Qiu, Yiwei & Zhou, Yi & Zang, Tianlei & Zhou, Buxiang & Qi, Ruomei & Lin, Jin & Wang, Jiepeng, 2023. "Dynamic parameter estimation of the alkaline electrolysis system combining Bayesian inference and adaptive polynomial surrogate models," Applied Energy, Elsevier, vol. 348(C).
    3. Zhang, Tao & Song, Lingjun & Yang, Fuyuan & Ouyang, Minggao, 2024. "Research on oxygen purity based on industrial scale alkaline water electrolysis system with 50Nm3 H2/h," Applied Energy, Elsevier, vol. 360(C).
    4. Zhang, Qinjin & Xie, Di & Zeng, Yuji & Liu, Yancheng & Yu, Heyang & Liu, Siyuan, 2024. "Optimizing wind-solar hydrogen production through collaborative strategy with ALK/PEM multi-electrolyzer arrays," Renewable Energy, Elsevier, vol. 232(C).
    5. Wang, Xiongzheng & Meng, Xin & Nie, Gongzhe & Li, Binghui & Yang, Haoran & He, Mingzhi, 2024. "Optimization of hydrogen production in multi-Electrolyzer systems: A novel control strategy for enhanced renewable energy utilization and Electrolyzer lifespan," Applied Energy, Elsevier, vol. 376(PB).
    6. Chi, Yingtian & Lin, Jin & Li, Peiyang & Yu, Zhipeng & Mu, Shujun & Li, Xi & Song, Yonghua, 2024. "Elevating the acceptable cost threshold for solid oxide cells: A case study on refinery decarbonization," Applied Energy, Elsevier, vol. 373(C).
    7. Gallo, María Angélica & García Clúa, José Gabriel, 2023. "Sizing and analytical optimization of an alkaline water electrolyzer powered by a grid-assisted wind turbine to minimize grid power exchange," Renewable Energy, Elsevier, vol. 216(C).
    8. Sun, Jing & Xia, Yanghong & Peng, Yonggang & Wang, Anqi & Xiong, Jia & Wei, Wei, 2024. "Optimal operation for P2H system with 100% renewable energy concerning thermal-electric properties," Energy, Elsevier, vol. 308(C).
    9. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    10. Vallianos, Charalampos & Candanedo, José & Athienitis, Andreas, 2023. "Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector," Energy, Elsevier, vol. 278(PA).
    11. Bruno Cárdenas & Lawrie Swinfen-Styles & James Rouse & Seamus D. Garvey, 2021. "Short-, Medium-, and Long-Duration Energy Storage in a 100% Renewable Electricity Grid: A UK Case Study," Energies, MDPI, vol. 14(24), pages 1-28, December.
    12. Jenkins, J.D. & Zhou, Z. & Ponciroli, R. & Vilim, R.B. & Ganda, F. & de Sisternes, F. & Botterud, A., 2018. "The benefits of nuclear flexibility in power system operations with renewable energy," Applied Energy, Elsevier, vol. 222(C), pages 872-884.
    13. Arjuna Nebel & Christine Krüger & Tomke Janßen & Mathieu Saurat & Sebastian Kiefer & Karin Arnold, 2020. "Comparison of the Effects of Industrial Demand Side Management and Other Flexibilities on the Performance of the Energy System," Energies, MDPI, vol. 13(17), pages 1-20, August.
    14. Soha, Tamás & Munkácsy, Béla & Harmat, Ádám & Csontos, Csaba & Horváth, Gergely & Tamás, László & Csüllög, Gábor & Daróczi, Henriett & Sáfián, Fanni & Szabó, Mária, 2017. "GIS-based assessment of the opportunities for small-scale pumped hydro energy storage in middle-mountain areas focusing on artificial landscape features," Energy, Elsevier, vol. 141(C), pages 1363-1373.
    15. Pusceddu, Elian & Zakeri, Behnam & Castagneto Gissey, Giorgio, 2021. "Synergies between energy arbitrage and fast frequency response for battery energy storage systems," Applied Energy, Elsevier, vol. 283(C).
    16. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    17. Hui Wang & Xiaowen Chen & Qianpeng Yang & Bowen Li & Zongyu Yue & Jeffrey Dankwa Ampah & Haifeng Liu & Mingfa Yao, 2024. "Optimization of Renewable Energy Hydrogen Production Systems Using Volatility Improved Multi-Objective Particle Swarm Algorithm," Energies, MDPI, vol. 17(10), pages 1-15, May.
    18. Mariia Kozlova & Alena Lohrmann, 2021. "Steering Renewable Energy Investments in Favor of Energy System Reliability: A Call for a Hybrid Model," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
    19. Javed, Muhammad Shahzad & Jurasz, Jakub & McPherson, Madeleine & Dai, Yanjun & Ma, Tao, 2022. "Quantitative evaluation of renewable-energy-based remote microgrids: curtailment, load shifting, and reliability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    20. Michael Schoepf & Martin Weibelzahl & Lisa Nowka, 2018. "The Impact of Substituting Production Technologies on the Economic Demand Response Potential in Industrial Processes," Energies, MDPI, vol. 11(9), pages 1-13, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124013296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.