IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v235y2024ics0960148124013946.html
   My bibliography  Save this article

Surface engineering of CuO-Cu2O heterojunction thin films for improved photoelectrochemical water splitting

Author

Listed:
  • Alotaibi, Abdullah M.
  • Muayqil, Elaf
  • Al Abass, Nawal
  • Alhajji, Mohammed A.
  • Bubshait, Almidqdad A.
  • Alhazmi, Nahla E.
  • Almuqhim, Anas A.

Abstract

The efficient production of green hydrogen poses a significant challenge that requires the development of active, low-cost, and stable catalysts. Copper oxide has emerged as a highly effective photocatalyst for water splitting, offering the advantages of being nontoxic, abundant, and inexpensive. Nonetheless, the photoelectrochemical water splitting (PEC) process can be enhanced through surface modification. In this study, we utilized single-source precursors for aerosol-assisted chemical vapor deposition (AACVD) in order to deposit thin films of copper oxide (CuO-Cu2O) heterojunctions onto a substrate composed of fluorine-doped tin oxide (FTO). The chosen precursor for this purpose was copper (II) nitrate hemi(pentahydrate). To further optimize the CuO-Cu2O films, a novel acid treatment involving the addition of varying quantities of acetic acid (AA) to the precursor solution was employed. Remarkably, this acid treatment resulted in a significant improvement in the photocurrent density of the CuO-Cu2O heterojunction. Notably, a 3 mL acid-treated CuO-Cu2O thin film exhibited an impressive photocurrent measure of −6.8 mA/cm2 at 0.0 V vs RHE in 0.5 M Na2SO4 electrolyte, compared to the performance of the untreated CuO-Cu2O thin film (−2.8 mA/cm2 at 0.0 V vs RHE). This catalyst demonstrated stability and a threefold increase in hydrogen production performance. The increase in photocurrent densities is closely linked to the influence of AA on two key factors: particle growth and structural defects, such as oxygen vacancies. This relationship has been confirmed through the examination of SEM, AFM, and PL spectra results. The findings of this study not only offer a novel approach to catalyst design but also propose a practical method for photoelectrochemical water splitting. This method holds great promise for achieving sustainable and renewable energy sources, as well as efficient green hydrogen production.

Suggested Citation

  • Alotaibi, Abdullah M. & Muayqil, Elaf & Al Abass, Nawal & Alhajji, Mohammed A. & Bubshait, Almidqdad A. & Alhazmi, Nahla E. & Almuqhim, Anas A., 2024. "Surface engineering of CuO-Cu2O heterojunction thin films for improved photoelectrochemical water splitting," Renewable Energy, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124013946
    DOI: 10.1016/j.renene.2024.121326
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124013946
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121326?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Webb, Jeremy & Longden, Thomas & Boulaire, Fanny & Gono, Marcel & Wilson, Clevo, 2023. "The application of green finance to the production of blue and green hydrogen: A comparative study," Renewable Energy, Elsevier, vol. 219(P1).
    2. Squadrito, Gaetano & Maggio, Gaetano & Nicita, Agatino, 2023. "The green hydrogen revolution," Renewable Energy, Elsevier, vol. 216(C).
    3. Wang, L.L. & Xian, R.C. & Jiao, P.H. & Chen, J.J. & Chen, Y. & Liu, H.G., 2024. "Multi-timescale optimization of integrated energy system with diversified utilization of hydrogen energy under the coupling of green certificate and carbon trading," Renewable Energy, Elsevier, vol. 228(C).
    4. Xue Zhou & Baihe Fu & Linjuan Li & Zheng Tian & Xiankui Xu & Zihao Wu & Jing Yang & Zhonghai Zhang, 2022. "Hydrogen-substituted graphdiyne encapsulated cuprous oxide photocathode for efficient and stable photoelectrochemical water reduction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Kai-Hang Ye & Haibo Li & Duan Huang & Shuang Xiao & Weitao Qiu & Mingyang Li & Yuwen Hu & Wenjie Mai & Hongbing Ji & Shihe Yang, 2019. "Enhancing photoelectrochemical water splitting by combining work function tuning and heterojunction engineering," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    6. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    7. Mazzeo, Domenico & Herdem, Münür Sacit & Matera, Nicoletta & Wen, John Z., 2022. "Green hydrogen production: Analysis for different single or combined large-scale photovoltaic and wind renewable systems," Renewable Energy, Elsevier, vol. 200(C), pages 360-378.
    8. Höök, Mikael & Tang, Xu, 2013. "Depletion of fossil fuels and anthropogenic climate change—A review," Energy Policy, Elsevier, vol. 52(C), pages 797-809.
    9. Carlson, Ewa Lazarczyk & Pickford, Kit & Nyga-Łukaszewska, Honorata, 2023. "Green hydrogen and an evolving concept of energy security: Challenges and comparisons," Renewable Energy, Elsevier, vol. 219(P1).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Chongzheng & Liu, Yuxiang & Yang, Xin & Li, Yuxing & Geng, Xiaoyi & Han, Hui & Lu, Xiao, 2024. "Experimental and numerical study on the offshore adaptability of new FLH2 floating hydrogen liquefaction production storage and offloading unit," Renewable Energy, Elsevier, vol. 224(C).
    2. Eugeniusz Mokrzycki & Lidia Gawlik, 2024. "The Development of a Green Hydrogen Economy: Review," Energies, MDPI, vol. 17(13), pages 1-29, June.
    3. Burton, N.A. & Padilla, R.V. & Rose, A. & Habibullah, H., 2021. "Increasing the efficiency of hydrogen production from solar powered water electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Wang, Yubao & Huang, Xiaozhou & Huang, Zhendong, 2024. "Energy-related uncertainty and Chinese stock market returns," Finance Research Letters, Elsevier, vol. 62(PB).
    5. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    6. Muhammad Habib Ur Rehman & Luigi Coppola & Ernestino Lufrano & Isabella Nicotera & Cataldo Simari, 2023. "Enhancing Water Retention, Transport, and Conductivity Performance in Fuel Cell Applications: Nafion-Based Nanocomposite Membranes with Organomodified Graphene Oxide Nanoplatelets," Energies, MDPI, vol. 16(23), pages 1-11, November.
    7. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    8. Mao, Guozhu & Zou, Hongyang & Chen, Guanyi & Du, Huibin & Zuo, Jian, 2015. "Past, current and future of biomass energy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1823-1833.
    9. Luo, Rongrong & Wang, Liuwei & Yu, Wei & Shao, Feilong & Shen, Haikuo & Xie, Huaqing, 2023. "High energy storage density titanium nitride-pentaerythritol solid–solid composite phase change materials for light-thermal-electric conversion," Applied Energy, Elsevier, vol. 331(C).
    10. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    11. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    12. Anna Borawska & Mariusz Borawski & Małgorzata Łatuszyńska, 2022. "Effectiveness of Electricity-Saving Communication Campaigns: Neurophysiological Approach," Energies, MDPI, vol. 15(4), pages 1-19, February.
    13. Jing Han Siow & Muhammad Roil Bilad & Wahyu Caesarendra & Jia Jia Leam & Mohammad Azmi Bustam & Nonni Soraya Sambudi & Yusuf Wibisono & Teuku Meurah Indra Mahlia, 2021. "Progress in Development of Nanostructured Manganese Oxide as Catalyst for Oxygen Reduction and Evolution Reaction," Energies, MDPI, vol. 14(19), pages 1-16, October.
    14. Yang, Jingluan & Chen, Wei, 2023. "Unravelling the landscape of global cobalt trade: Patterns, robustness, and supply chain security," Resources Policy, Elsevier, vol. 86(PB).
    15. Sardarabadi, Mohammad & Hosseinzadeh, Mohammad & Kazemian, Arash & Passandideh-Fard, Mohammad, 2017. "Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints," Energy, Elsevier, vol. 138(C), pages 682-695.
    16. Fanta Barry & Marie Sawadogo & Maïmouna Bologo (Traoré) & Igor W. K. Ouédraogo & Thomas Dogot, 2021. "Key Barriers to the Adoption of Biomass Gasification in Burkina Faso," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    17. Lili Zhang & Ning Zhang & Huishan Shang & Zhiyi Sun & Zihao Wei & Jingtao Wang & Yuanting Lei & Xiaochen Wang & Dan Wang & Yafei Zhao & Zhongti Sun & Fang Zhang & Xu Xiang & Bing Zhang & Wenxing Chen, 2024. "High-density asymmetric iron dual-atom sites for efficient and stable electrochemical water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    19. Li, Jinpeng & Chen, Xiangjie & Li, Guiqiang, 2023. "Effect of separation wavelength on a novel solar-driven hybrid hydrogen production system (SDHPS) by solar full spectrum energy," Renewable Energy, Elsevier, vol. 215(C).
    20. Sicong Wang & Changhai Qin & Yong Zhao & Jing Zhao & Yuping Han, 2023. "The Evolutionary Path of the Center of Gravity for Water Use, the Population, and the Economy, and Their Decomposed Contributions in China from 1965 to 2019," Sustainability, MDPI, vol. 15(12), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124013946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.