IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3769-d1135352.html
   My bibliography  Save this article

Economic and Environmental Assessment of Hydrogen Production from Brazilian Energy Grid

Author

Listed:
  • José Carlos Curvelo Santana

    (Department of Industrial engineering, Polytechnic School, São Paulo University, Av. Prof. Luciano Gualberto, 380-Butantã, São Paulo 05508010, SP, Brazil)

  • Pedro Gerber Machado

    (Department of Industrial engineering, Polytechnic School, São Paulo University, Av. Prof. Luciano Gualberto, 380-Butantã, São Paulo 05508010, SP, Brazil)

  • Cláudio Augusto Oller do Nascimento

    (Department of Chemical Engineering, Polytechnic School, São Paulo University, São Paulo 05508010, SP, Brazil)

  • Celma de Oliveira Ribeiro

    (Department of Industrial engineering, Polytechnic School, São Paulo University, Av. Prof. Luciano Gualberto, 380-Butantã, São Paulo 05508010, SP, Brazil)

Abstract

The Brazilian energy grid is considered as one of the cleanest in the world, because it is composed of more than 80% of renewable energy sources. This work aimed to apply the levelized costs (LCOH) and environmental cost accounting techniques to demonstrate the feasibility of producing hydrogen (H 2 ) by alkaline electrolysis powered by the Brazilian energy grid. A project of hydrogen production, with a lifetime of 20 years, had been evaluated by economical and sensitivity analysis. The production capacity (8.89 to 46.67 kg H 2 /h), production volume (25 to 100%), hydrogen sale price (1 to 5 USD/kg H 2 ) and the MAR rate were varied. Results showed that at 2 USD/kg H 2 , all H 2 production plant sizes are economically viable. On this condition, a payback of fewer than 4 years, an IRR greater than 31, a break-even point between 56 and 68% of the production volume and a ROI above 400% were found. The sensitivity analysis showed that the best economic condition was found at 35.56 kg H 2 /h of the plant size, which generated a net present value of USD 10.4 million. The cost of hydrogen varied between 1.26 and 1.64 USD/kg and a LCOH of 37.76 to 48.71 USD/MWh. LCA analysis showed that the hydrogen production project mitigated from 26 to 131 thousand tons of CO 2 , under the conditions studied.

Suggested Citation

  • José Carlos Curvelo Santana & Pedro Gerber Machado & Cláudio Augusto Oller do Nascimento & Celma de Oliveira Ribeiro, 2023. "Economic and Environmental Assessment of Hydrogen Production from Brazilian Energy Grid," Energies, MDPI, vol. 16(9), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3769-:d:1135352
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3769/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3769/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ludvik Viktorsson & Jukka Taneli Heinonen & Jon Bjorn Skulason & Runar Unnthorsson, 2017. "A Step towards the Hydrogen Economy—A Life Cycle Cost Analysis of A Hydrogen Refueling Station," Energies, MDPI, vol. 10(6), pages 1-15, May.
    2. Flavio Guerhardt & Thadeu Alfredo Farias Silva & Felix Martin Carbajal Gamarra & Silvestre Eduardo Rocha Ribeiro Júnior & Segundo Alberto Vásquez Llanos & Ada Patricia Barturén Quispe & Milton Vieira , 2020. "A Smart Grid System for Reducing Energy Consumption and Energy Cost in Buildings in São Paulo, Brazil," Energies, MDPI, vol. 13(15), pages 1-22, July.
    3. Akito Ozawa & Mai Inoue & Naomi Kitagawa & Ryoji Muramatsu & Yurie Anzai & Yutaka Genchi & Yuki Kudoh, 2017. "Assessing Uncertainties of Well-To-Tank Greenhouse Gas Emissions from Hydrogen Supply Chains," Sustainability, MDPI, vol. 9(7), pages 1-26, June.
    4. Mazzeo, Domenico & Herdem, Münür Sacit & Matera, Nicoletta & Wen, John Z., 2022. "Green hydrogen production: Analysis for different single or combined large-scale photovoltaic and wind renewable systems," Renewable Energy, Elsevier, vol. 200(C), pages 360-378.
    5. José Carlos Curvelo Santana & Amanda Carvalho Miranda & Luane Souza & Charles Lincoln Kenji Yamamura & Diego de Freitas Coelho & Elias Basile Tambourgi & Fernando Tobal Berssaneti & Linda Lee Ho, 2021. "Clean Production of Biofuel from Waste Cooking Oil to Reduce Emissions, Fuel Cost, and Respiratory Disease Hospitalizations," Sustainability, MDPI, vol. 13(16), pages 1-25, August.
    6. José Carlos Curvelo Santana & Amanda Carvalho Miranda & Charles Lincoln Kenji Yamamura & Silvério Catureba da Silva Filho & Elias Basile Tambourgi & Linda Lee Ho & Fernando Tobal Berssaneti, 2020. "Effects of Air Pollution on Human Health and Costs: Current Situation in São Paulo, Brazil," Sustainability, MDPI, vol. 12(12), pages 1-20, June.
    7. Maggio, G. & Squadrito, G. & Nicita, A., 2022. "Hydrogen and medical oxygen by renewable energy based electrolysis: A green and economically viable route," Applied Energy, Elsevier, vol. 306(PA).
    8. Moraes, Bruna S. & Junqueira, Tassia L. & Pavanello, Lucas G. & Cavalett, Otávio & Mantelatto, Paulo E. & Bonomi, Antonio & Zaiat, Marcelo, 2014. "Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: Profit or expense?," Applied Energy, Elsevier, vol. 113(C), pages 825-835.
    9. Luiz Fernando Rodrigues Pinto & Glória de Fátima Pereira Venturini & Salvatore Digiesi & Francesco Facchini & Geraldo Cardoso de Oliveira Neto, 2020. "Sustainability Assessment in Manufacturing under a Strong Sustainability Perspective—An Ecological Neutrality Initiative," Sustainability, MDPI, vol. 12(21), pages 1-40, November.
    10. Miranda, Amanda Carvalho & da Silva Filho, Silvério Catureba & Tambourgi, Elias Basile & CurveloSantana, José Carlos & Vanalle, Rosangela Maria & Guerhardt, Flávio, 2018. "Analysis of the costs and logistics of biodiesel production from used cooking oil in the metropolitan region of Campinas (Brazil)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 373-379.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arkadiusz Małek & Agnieszka Dudziak & Jacek Caban & Monika Stoma, 2024. "Strategic Model for Yellow Hydrogen Production Using the Metalog Family of Probability Distributions," Energies, MDPI, vol. 17(10), pages 1-24, May.
    2. Ana Beatriz Barros Souza Riedel & Vitor Feitosa Riedel & Hélio Nunes de Souza Filho & Ennio Peres da Silva & Renato Marques Cabral & Leandro de Brito Silva & Alexandre de Castro Pereira, 2024. "Technical–Economic Analysis of Renewable Hydrogen Production from Solar Photovoltaic and Hydro Synergy in a Pilot Plant in Brazil," Energies, MDPI, vol. 17(17), pages 1-20, September.
    3. Hojun Song & Yunji Kim & Heena Yang, 2023. "Design and Optimization of an Alkaline Electrolysis System for Small-Scale Hydropower Integration," Energies, MDPI, vol. 17(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Carlos Curvelo Santana & Amanda Carvalho Miranda & Luane Souza & Charles Lincoln Kenji Yamamura & Diego de Freitas Coelho & Elias Basile Tambourgi & Fernando Tobal Berssaneti & Linda Lee Ho, 2021. "Clean Production of Biofuel from Waste Cooking Oil to Reduce Emissions, Fuel Cost, and Respiratory Disease Hospitalizations," Sustainability, MDPI, vol. 13(16), pages 1-25, August.
    2. Nan Jia & Yinshuai Li & Ruishan Chen & Hongbo Yang, 2023. "A Review of Global PM 2.5 Exposure Research Trends from 1992 to 2022," Sustainability, MDPI, vol. 15(13), pages 1-15, July.
    3. Peiqi Hu & Kai Zhou & Haoxi Zhang & Zhong Ma & Jingyuan Li, 2023. "The Cause and Correlation Network of Air Pollution from a Spatial Perspective: Evidence from the Beijing–Tianjin–Hebei Region," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    4. Vladimír Konečný & Jozef Gnap & Tomáš Settey & František Petro & Tomáš Skrúcaný & Tomasz Figlus, 2020. "Environmental Sustainability of the Vehicle Fleet Change in Public City Transport of Selected City in Central Europe," Energies, MDPI, vol. 13(15), pages 1-23, July.
    5. Ushnik Mukherjee & Azadeh Maroufmashat & Apurva Narayan & Ali Elkamel & Michael Fowler, 2017. "A Stochastic Programming Approach for the Planning and Operation of a Power to Gas Energy Hub with Multiple Energy Recovery Pathways," Energies, MDPI, vol. 10(7), pages 1-27, June.
    6. Tubagus Aryandi Gunawan & Alessandro Singlitico & Paul Blount & James Burchill & James G. Carton & Rory F. D. Monaghan, 2020. "At What Cost Can Renewable Hydrogen Offset Fossil Fuel Use in Ireland’s Gas Network?," Energies, MDPI, vol. 13(7), pages 1-23, April.
    7. Patrycja Rogula-Kopiec & Wioletta Rogula-Kozłowska & Grzegorz Majewski, 2022. "Particulate Matter Concentration in Selected Facilities as an Indicator of Exposure to Their Service Activities," IJERPH, MDPI, vol. 19(16), pages 1-18, August.
    8. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    9. Akito Ozawa & Yuki Kudoh, 2021. "Assessing Uncertainties of Life-Cycle CO 2 Emissions Using Hydrogen Energy for Power Generation," Energies, MDPI, vol. 14(21), pages 1-23, October.
    10. Haugen, Molly J. & Paoli, Leonardo & Cullen, Jonathan & Cebon, David & Boies, Adam M., 2021. "A fork in the road: Which energy pathway offers the greatest energy efficiency and CO2 reduction potential for low-carbon vehicles?," Applied Energy, Elsevier, vol. 283(C).
    11. Zhicheng Lai & Lei Li & Zhuomin Tao & Tao Li & Xiaoting Shi & Jialing Li & Xin Li, 2023. "Spatio-Temporal Evolution and Influencing Factors of Ecological Well-Being Performance from the Perspective of Strong Sustainability: A Case Study of the Three Gorges Reservoir Area, China," IJERPH, MDPI, vol. 20(3), pages 1-25, January.
    12. Raquel de Souza Deuber & Jéssica Marcon Bressanin & Daniel Santos Fernandes & Henrique Real Guimarães & Mateus Ferreira Chagas & Antonio Bonomi & Leonardo Vasconcelos Fregolente & Marcos Djun Barbosa , 2023. "Production of Sustainable Aviation Fuels from Lignocellulosic Residues in Brazil through Hydrothermal Liquefaction: Techno-Economic and Environmental Assessments," Energies, MDPI, vol. 16(6), pages 1-21, March.
    13. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "Renewable smart energy network: A thermoeconomic comparison between conventional lithium-ion batteries and reversible solid oxide fuel cells," Renewable Energy, Elsevier, vol. 214(C), pages 74-95.
    14. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Sforzini, Matteo & de Santoli, Livio, 2022. "Technical, economic and environmental issues related to electrolysers capacity targets according to the Italian Hydrogen Strategy: A critical analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    15. Matsuo, Yuhji & Endo, Seiya & Nagatomi, Yu & Shibata, Yoshiaki & Komiyama, Ryoichi & Fujii, Yasumasa, 2018. "A quantitative analysis of Japan's optimal power generation mix in 2050 and the role of CO2-free hydrogen," Energy, Elsevier, vol. 165(PB), pages 1200-1219.
    16. Arodudu, Oludunsin Tunrayo & Helming, Katharina & Voinov, Alexey & Wiggering, Hubert, 2017. "Integrating agronomic factors into energy efficiency assessment of agro-bioenergy production – A case study of ethanol and biogas production from maize feedstock," Applied Energy, Elsevier, vol. 198(C), pages 426-439.
    17. Huang, Jiangfeng & Khan, Muhammad Tahir & Perecin, Danilo & Coelho, Suani T. & Zhang, Muqing, 2020. "Sugarcane for bioethanol production: Potential of bagasse in Chinese perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    18. Batara Surya & Hamsina Hamsina & Ridwan Ridwan & Baharuddin Baharuddin & Firman Menne & Andi Tenri Fitriyah & Emil Salim Rasyidi, 2020. "The Complexity of Space Utilization and Environmental Pollution Control in the Main Corridor of Makassar City, South Sulawesi, Indonesia," Sustainability, MDPI, vol. 12(21), pages 1-41, November.
    19. Siqueira, J.C. & Braga, M.Q. & Ázara, M.S. & Garcia, K.J. & Alencar, S.N.M. & Ramos, T.S. & Siniscalchi, L.A.B. & Assemany, P.P. & Ensinas, A.V., 2022. "Recovery of vinasse with combined microalgae cultivation in a conceptual energy-efficient industrial plant: Analysis of related process considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    20. Nakashima, R.N. & de Oliveira Junior, S., 2020. "Comparative exergy assessment of vinasse disposal alternatives: Concentration, anaerobic digestion and fertirrigation," Renewable Energy, Elsevier, vol. 147(P1), pages 1969-1978.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3769-:d:1135352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.