IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5256-d1189904.html
   My bibliography  Save this article

Perspectives on the Applications of Radiative Cooling in Buildings and Electric Cars

Author

Listed:
  • N. S. Susan Mousavi

    (School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran P.O. Box 19395-5531, Iran)

  • Brian Azzopardi

    (MCAST Energy Research Group, Institute of Engineering and Transport, Malta College of Arts, Science and Technology (MCAST), Main Campus, Corradino Hill, PLA 9032 Paola, Malta
    The Foundation for Innovation and Research—Malta, 65 Design Centre Level 2, Tower Road, BKR 4012 Birkirkara, Malta)

Abstract

Cooling energy consumption is a major contributor to various sectors in hot climates with a significant number of warm days throughout the year. Buildings account for 40% of total energy consumption, with approximately ∼30–40% of that used for cooling in geographical areas such as Iran. Energy demand for cooling is an important factor in the overall energy efficiency of electric mobility. Electric vehicles (EVs) consume ∼30–50% of energy for the air conditioning (AC) system. Therefore, the efficient management of the cooling demand is essential in implementing energy-saving strategies. Passive radiative cooling is capable of providing subambient cooling without consuming any energy. This article reviews potential applications of passive radiative cooling in reducing cooling energy for buildings. It also provides a rough estimate of the amount of energy saved when applying a radiative cool roof to a model building. It is shown that by using radiative cool materials on roofs, the share of electricity usage for cooling can be reduced to 10%, leading to a reduction in cooling load by 90%. Additionally, the potential use of radiative cool coats of various types for different EV components, such as shell/body, windows, and fabrics, is introduced. Although the prospects of the design and engineering of radiative cooling products appear promising for both buildings and EVs, further investigations are necessary to evaluate scalability, durability, and performance based on factors such as geography and meteorology.

Suggested Citation

  • N. S. Susan Mousavi & Brian Azzopardi, 2023. "Perspectives on the Applications of Radiative Cooling in Buildings and Electric Cars," Energies, MDPI, vol. 16(14), pages 1-11, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5256-:d:1189904
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5256/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5256/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wendy Miller & Glenn Crompton & John Bell, 2015. "Analysis of Cool Roof Coatings for Residential Demand Side Management in Tropical Australia," Energies, MDPI, vol. 8(6), pages 1-16, June.
    2. Penning, Andrew K. & Weibel, Justin A., 2023. "Assessing the influence of glass properties on cabin solar heating and range of an electric vehicle using a comprehensive system model," Applied Energy, Elsevier, vol. 339(C).
    3. Zhao, Bin & Hu, Mingke & Ao, Xianze & Xuan, Qingdong & Pei, Gang, 2020. "Spectrally selective approaches for passive cooling of solar cells: A review," Applied Energy, Elsevier, vol. 262(C).
    4. Aaswath P. Raman & Marc Abou Anoma & Linxiao Zhu & Eden Rephaeli & Shanhui Fan, 2014. "Passive radiative cooling below ambient air temperature under direct sunlight," Nature, Nature, vol. 515(7528), pages 540-544, November.
    5. Bijarniya, Jay Prakash & Sarkar, Jahar & Maiti, Pralay, 2020. "Review on passive daytime radiative cooling: Fundamentals, recent researches, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. Frederica Perera, 2017. "Pollution from Fossil-Fuel Combustion is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist," IJERPH, MDPI, vol. 15(1), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ji & Yuan, Jianjuan & Liu, Junwei & Zhou, Zhihua & Sui, Jiyuan & Xing, Jincheng & Zuo, Jian, 2021. "Cover shields for sub-ambient radiative cooling: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Xu, Nuo & Wang, Jiacheng & Cui, Yubo & Ren, Shenghao & Deng, Jiangbin & Gou, Qianzhi & Chen, Zhaoyu & Wang, Kaixin & Geng, Yang & Cui, Jiaxi & Li, Meng, 2024. "Butterfly wing-inspired microstructured film with high reflectivity for efficient passive radiative cooling," Renewable Energy, Elsevier, vol. 229(C).
    3. Wang, Cun-Hai & Chen, Hao & Jiang, Ze-Yi & Zhang, Xin-Xin & Wang, Fu-Qiang, 2023. "Modelling and performance evaluation of a novel passive thermoelectric system based on radiative cooling and solar heating for 24-hour power-generation," Applied Energy, Elsevier, vol. 331(C).
    4. Gopalakrishna Gangisetty & Ron Zevenhoven, 2023. "A Review of Nanoparticle Material Coatings in Passive Radiative Cooling Systems Including Skylights," Energies, MDPI, vol. 16(4), pages 1-59, February.
    5. Lu, Xing & Xu, Peng & Wang, Huilong & Yang, Tao & Hou, Jin, 2016. "Cooling potential and applications prospects of passive radiative cooling in buildings: The current state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1079-1097.
    6. Jianheng Chen & Lin Lu & Linrui Jia & Quan Gong, 2023. "Performance Evaluation of High-Rise Buildings Integrated with Colored Radiative Cooling Walls in a Hot and Humid Region," Sustainability, MDPI, vol. 15(16), pages 1-17, August.
    7. Yan, Tian & Xu, Dawei & Meng, Jing & Xu, Xinhua & Yu, Zhongyi & Wu, Huijun, 2024. "A review of radiative sky cooling technology and its application in building systems," Renewable Energy, Elsevier, vol. 220(C).
    8. Miranda, Nicole D. & Renaldi, Renaldi & Khosla, Radhika & McCulloch, Malcolm D., 2021. "Bibliometric analysis and landscape of actors in passive cooling research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    9. Su, Xiaosong & Zhang, Ling & Liu, Zhongbing & Luo, Yongqiang & Chen, Dapeng & Li, Weijiao, 2021. "Performance evaluation of a novel building envelope integrated with thermoelectric cooler and radiative sky cooler," Renewable Energy, Elsevier, vol. 171(C), pages 1061-1078.
    10. Zhao, Bin & Lu, Kegui & Hu, Mingke & Liu, Jie & Wu, Lijun & Xu, Chengfeng & Xuan, Qingdong & Pei, Gang, 2022. "Radiative cooling of solar cells with micro-grating photonic cooler," Renewable Energy, Elsevier, vol. 191(C), pages 662-668.
    11. Feng, Chi & Lei, Yue & Huang, Xianqi & Zhang, Weidong & Feng, Ya & Zheng, Xing, 2022. "Experimental and theoretical analysis of sub-ambient cooling with longwave radiative coating," Renewable Energy, Elsevier, vol. 193(C), pages 634-644.
    12. Bu, Fan & Yan, Da & Tan, Gang & Sun, Hongsan & An, Jingjing, 2022. "Systematically incorporating spectrum-selective radiative cooling into building performance simulation: Numerical integration method and experimental validation," Applied Energy, Elsevier, vol. 312(C).
    13. Lv, Song & Zhang, Mingming & Tian, Junwei & Zhang, Zexu & Duan, Zhiyu & Wu, Yangyang & Deng, Yirong, 2024. "Performance analysis of radiative cooling combined with photovoltaic-driven thermoelectric cooling system in practical application," Energy, Elsevier, vol. 294(C).
    14. Lv, Song & Zhang, Bolong & Ji, Yishuang & Ren, Juwen & Yang, Jiahao & Lai, Yin & Chang, Zhihao, 2023. "Comprehensive research on a high performance solar and radiative cooling driving thermoelectric generator system with concentration for passive power generation," Energy, Elsevier, vol. 275(C).
    15. Seonggon Kim & Jong Ha Park & Jae Won Lee & Yongchan Kim & Yong Tae Kang, 2023. "Self-recovering passive cooling utilizing endothermic reaction of NH4NO3/H2O driven by water sorption for photovoltaic cell," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Bu, Fan & Yan, Da & Tan, Gang & An, Jingjing, 2024. "A novel approach based on equivalent sky radiative temperature for quick computation of radiative cooling in building energy simulation," Renewable Energy, Elsevier, vol. 221(C).
    17. Pirvaram, Atousa & Talebzadeh, Nima & Leung, Siu Ning & O'Brien, Paul G., 2022. "Radiative cooling for buildings: A review of techno-enviro-economics and life-cycle assessment methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. Su, Weiguang & Cai, Pei & Kang, Ruigeng & Wang, Li & Kokogiannakis, Georgios & Chen, Jun & Gao, Liying & Li, Anqing & Xu, Chonghai, 2022. "Development of temperature-responsive transmission switch film (TRTSF) using phase change material for self-adaptive radiative cooling," Applied Energy, Elsevier, vol. 322(C).
    19. Zhong, Fangliang & Calautit, John Kaiser & Wu, Yupeng, 2022. "Assessment of HVAC system operational fault impacts and multiple faults interactions under climate change," Energy, Elsevier, vol. 258(C).
    20. Bu, Fan & Yan, Da & Tan, Gang & Sun, Hongsan & An, Jingjing, 2023. "Acceleration algorithms for long-wavelength radiation integral in the annual simulation of radiative cooling in buildings," Renewable Energy, Elsevier, vol. 202(C), pages 255-269.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5256-:d:1189904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.