IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41797-3.html
   My bibliography  Save this article

Thin lamellar films with enhanced mechanical properties for durable radiative cooling

Author

Listed:
  • Lianhu Xiong

    (Sichuan University)

  • Yun Wei

    (Sichuan University)

  • Chuanliang Chen

    (Sichuan University)

  • Xin Chen

    (Sichuan University)

  • Qiang Fu

    (Sichuan University)

  • Hua Deng

    (Sichuan University)

Abstract

Passive daytime radiative cooling is a promising path to tackle energy, environment and security issues originated from global warming. However, the contradiction between desired high solar reflectivity and necessary applicable performance is a major limitation at this stage. Herein, we demonstrate a “Solvent exchange-Reprotonation” processing strategy to fabricate a lamellar structure integrating aramid nanofibers with core-shell TiO2-coated Mica microplatelets for enhanced strength and durability without compromising optical performance. Such approach enables a slow but complete two-step protonation transition and the formation of three-dimensional dendritic networks with strong fibrillar joints, where overloaded scatterers are stably grasped and anchored in alignment, thereby resulting in a high strength of ~112 MPa as well as excellent environmental durability including ultraviolet aging, high temperature, scratches, etc. Notably, the strong backward scattering excited by multiple core-shell and shell-air interfaces guarantees a balanced reflectivity (~92%) and thickness (~25 μm), which is further revealed by outdoor tests where attainable subambient temperature drops are ~3.35 °C for daytime and ~6.11 °C for nighttime. Consequently, both the cooling capacity and comprehensive outdoor-services performance, greatly push radiative cooling towards real-world applications.

Suggested Citation

  • Lianhu Xiong & Yun Wei & Chuanliang Chen & Xin Chen & Qiang Fu & Hua Deng, 2023. "Thin lamellar films with enhanced mechanical properties for durable radiative cooling," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41797-3
    DOI: 10.1038/s41467-023-41797-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41797-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41797-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jianing Song & Wenluan Zhang & Zhengnan Sun & Mengyao Pan & Feng Tian & Xiuhong Li & Ming Ye & Xu Deng, 2022. "Durable radiative cooling against environmental aging," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Aaswath P. Raman & Marc Abou Anoma & Linxiao Zhu & Eden Rephaeli & Shanhui Fan, 2014. "Passive radiative cooling below ambient air temperature under direct sunlight," Nature, Nature, vol. 515(7528), pages 540-544, November.
    3. Jingsong Peng & Antoni P. Tomsia & Lei Jiang & Ben Zhong Tang & Qunfeng Cheng, 2021. "Stiff and tough PDMS-MMT layered nanocomposites visualized by AIE luminogens," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Bikram Bhatia & Arny Leroy & Yichen Shen & Lin Zhao & Melissa Gianello & Duanhui Li & Tian Gu & Juejun Hu & Marin Soljačić & Evelyn N. Wang, 2018. "Passive directional sub-ambient daytime radiative cooling," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ji & Yuan, Jianjuan & Liu, Junwei & Zhou, Zhihua & Sui, Jiyuan & Xing, Jincheng & Zuo, Jian, 2021. "Cover shields for sub-ambient radiative cooling: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Liu, Junwei & Zhang, Ji & Zhang, Debao & Jiao, Shifei & Xing, Jincheng & Tang, Huajie & Zhang, Ying & Li, Shuai & Zhou, Zhihua & Zuo, Jian, 2020. "Sub-ambient radiative cooling with wind cover," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    3. Xueke Wu & Jinlei Li & Fei Xie & Xun-En Wu & Siming Zhao & Qinyuan Jiang & Shiliang Zhang & Baoshun Wang & Yunrui Li & Di Gao & Run Li & Fei Wang & Ya Huang & Yanlong Zhao & Yingying Zhang & Wei Li & , 2024. "A dual-selective thermal emitter with enhanced subambient radiative cooling performance," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Huang, Jiachen & Zhang, Xuan-kai & Yu, Xiyu & Tang, G.H. & Wang, Xinyu & Du, Mu, 2024. "Scalable self-adaptive radiative cooling film through VO2-based switchable core–shell particles," Renewable Energy, Elsevier, vol. 224(C).
    5. Jiang, Kaiyu & Zhang, Kai & Shi, Zijie & Li, Haoran & Wu, Bingyang & Mahian, Omid & Zhu, Yutong, 2023. "Experimental and numerical study on the potential of a new radiative cooling paint boosted by SiO2 microparticles for energy saving," Energy, Elsevier, vol. 283(C).
    6. Chen, Siru & Lin, Kaixin & Pan, Aiqiang & Ho, Tsz Chung & Zhu, Yihao & Tso, Chi Yan, 2023. "Study of a passive radiative cooling coating on chemical storage tanks for evaporative loss control," Renewable Energy, Elsevier, vol. 211(C), pages 326-335.
    7. Kit-Ying Chan & Xi Shen & Jie Yang & Keng-Te Lin & Harun Venkatesan & Eunyoung Kim & Heng Zhang & Jeng-Hun Lee & Jinhong Yu & Jinglei Yang & Jang-Kyo Kim, 2022. "Scalable anisotropic cooling aerogels by additive freeze-casting," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Ziwei Fan & Taeseung Hwang & Sam Lin & Yixin Chen & Zi Jing Wong, 2024. "Directional thermal emission and display using pixelated non-imaging micro-optics," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    9. Dongpyo Hong & Yong Joon Lee & Ok Sung Jeon & In-Sung Lee & Se Hun Lee & Jae Yeon Won & Young Pyo Jeon & Yunju La & Seonmyeong Kim & Gun-Sik Park & Young Joon Yoo & Sang Yoon Park, 2024. "Humidity-tolerant porous polymer coating for passive daytime radiative cooling," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Wang, Xuanjie & Narayan, Shankar, 2022. "Thermal radiative switching interface for energy-efficient temperature control," Renewable Energy, Elsevier, vol. 197(C), pages 574-582.
    11. Lv, Song & Ji, Yishuang & Qian, Zuoqin & He, Wei & Hu, Zhongting & Liu, Minghou, 2021. "A novel strategy of enhancing sky radiative cooling by solar photovoltaic-thermoelectric cooler," Energy, Elsevier, vol. 219(C).
    12. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Xuan, Qingdong & Su, Yuehong & Pei, Gang, 2019. "A novel strategy for a building-integrated diurnal photovoltaic and all-day radiative cooling system," Energy, Elsevier, vol. 183(C), pages 892-900.
    13. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Xuan, Qingdong & Jiao, Dongsheng & Pei, Gang, 2019. "Performance analysis of a hybrid system combining photovoltaic and nighttime radiative cooling," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    14. Lv, Song & Sun, Xinyi & Zhang, Bolong & Lai, Yin & Yang, Jiahao, 2024. "Research on the influence and optimization of sunshade effect on radiative cooling performance," Energy, Elsevier, vol. 297(C).
    15. Pirvaram, Atousa & Talebzadeh, Nima & Leung, Siu Ning & O'Brien, Paul G., 2022. "Radiative cooling for buildings: A review of techno-enviro-economics and life-cycle assessment methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    16. Su, Weiguang & Cai, Pei & Kang, Ruigeng & Wang, Li & Kokogiannakis, Georgios & Chen, Jun & Gao, Liying & Li, Anqing & Xu, Chonghai, 2022. "Development of temperature-responsive transmission switch film (TRTSF) using phase change material for self-adaptive radiative cooling," Applied Energy, Elsevier, vol. 322(C).
    17. Zhong, Fangliang & Calautit, John Kaiser & Wu, Yupeng, 2022. "Assessment of HVAC system operational fault impacts and multiple faults interactions under climate change," Energy, Elsevier, vol. 258(C).
    18. Bu, Fan & Yan, Da & Tan, Gang & Sun, Hongsan & An, Jingjing, 2023. "Acceleration algorithms for long-wavelength radiation integral in the annual simulation of radiative cooling in buildings," Renewable Energy, Elsevier, vol. 202(C), pages 255-269.
    19. Marco Noro & Simone Mancin & Roger Riehl, 2021. "Energy and Economic Sustainability of a Trigeneration Solar System Using Radiative Cooling in Mediterranean Climate," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    20. Zhang, Yi & Tennakoon, Thilhara & Chan, Yin Hoi & Chan, Ka Chung & Fu, Sau Chung & Tso, Chi Yan & Yu, Kin Man & Huang, Bao Ling & Yao, Shu Huai & Qiu, Hui He & Chao, Christopher Y.H., 2022. "Energy consumption modelling of a passive hybrid system for office buildings in different climates," Energy, Elsevier, vol. 239(PA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41797-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.