IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v196y2022icp405-421.html
   My bibliography  Save this article

Supply chain optimization and GHG emissions in biofuel production from forestry residues in Sweden

Author

Listed:
  • Basile, Flavia
  • Pilotti, Lorenzo
  • Ugolini, Marco
  • Lozza, Giovanni
  • Manzolini, Giampaolo

Abstract

This paper applies an innovative optimization methodology to the supply chain of biomethanol production starting from forestry residues in Sweden. The model accounts for the collection of the biomass, the transport to the biorefinery including intermediate storages and the biodiesel plant. Particular attention is devoted to the characterization from economic and environmental point of view of the transport by truck and trains, the impact of the drying process as well as the size of the biorefinery plant. Results show that the forestry residues collection is limited by the size of the biodiesel plants. The calculated cost of the fuel is around 525 €/t being the biorefinery the major cost. The equivalent CO2 emissions are around 10.4 gCO2/MJMeOH thanks to the low carbon intensity of the Swedish electricity. A sensitivity analysis showed that the supply chain does not vary significantly assuming higher prices of biomethanol.

Suggested Citation

  • Basile, Flavia & Pilotti, Lorenzo & Ugolini, Marco & Lozza, Giovanni & Manzolini, Giampaolo, 2022. "Supply chain optimization and GHG emissions in biofuel production from forestry residues in Sweden," Renewable Energy, Elsevier, vol. 196(C), pages 405-421.
  • Handle: RePEc:eee:renene:v:196:y:2022:i:c:p:405-421
    DOI: 10.1016/j.renene.2022.06.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122009351
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.06.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lam, Hon Loong & Varbanov, Petar Sabev & Klemes, Jirí Jaromír, 2011. "Regional renewable energy and resource planning," Applied Energy, Elsevier, vol. 88(2), pages 545-550, February.
    2. Nunes, L.J.R. & Causer, T.P. & Ciolkosz, D., 2020. "Biomass for energy: A review on supply chain management models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    3. Aalto, Mika & KC, Raghu & Korpinen, Olli-Jussi & Karttunen, Kalle & Ranta, Tapio, 2019. "Modeling of biomass supply system by combining computational methods – A review article," Applied Energy, Elsevier, vol. 243(C), pages 145-154.
    4. Sultana, Arifa & Kumar, Amit, 2012. "Optimal siting and size of bioenergy facilities using geographic information system," Applied Energy, Elsevier, vol. 94(C), pages 192-201.
    5. Leduc, S. & Lundgren, J. & Franklin, O. & Dotzauer, E., 2010. "Location of a biomass based methanol production plant: A dynamic problem in northern Sweden," Applied Energy, Elsevier, vol. 87(1), pages 68-75, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bernardine Chigozie Chidozie & Ana Luísa Ramos & José Vasconcelos Ferreira & Luís Pinto Ferreira, 2023. "Residual Agroforestry Biomass Supply Chain Simulation Insights and Directions: A Systematic Literature Review," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    2. Nimmanterdwong, Prathana & Chalermsinsuwan, Benjapon & Piumsomboon, Pornpote, 2023. "Optimizing utilization pathways for biomass to chemicals and energy by integrating emergy analysis and particle swarm optimization (PSO)," Renewable Energy, Elsevier, vol. 202(C), pages 1448-1459.
    3. Stefan Cristian Galusnyak & Letitia Petrescu & Dora Andreea Chisalita & Calin-Cristian Cormos & Marco Ugolini, 2023. "From Secondary Biomass to Bio-Methanol through CONVERGE Technology: An Environmental Analysis," Energies, MDPI, vol. 16(6), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jun & Osmani, Atif & Awudu, Iddrisu & Gonela, Vinay, 2013. "An integrated optimization model for switchgrass-based bioethanol supply chain," Applied Energy, Elsevier, vol. 102(C), pages 1205-1217.
    2. Shu, Kesheng & Schneider, Uwe A. & Scheffran, Jürgen, 2017. "Optimizing the bioenergy industry infrastructure: Transportation networks and bioenergy plant locations," Applied Energy, Elsevier, vol. 192(C), pages 247-261.
    3. Teijo Palander & Kalle Kärhä, 2016. "Adaptive Procurement Guidelines for Automatic Selection of Renewable Forest Energy Sources within a Sustainable Energy Production System," Energies, MDPI, vol. 9(3), pages 1-10, March.
    4. Martinez-Valencia, Lina & Garcia-Perez, Manuel & Wolcott, Michael P., 2021. "Supply chain configuration of sustainable aviation fuel: Review, challenges, and pathways for including environmental and social benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. Beatriz M. Paredes-Sánchez & José P. Paredes-Sánchez & Paulino J. García-Nieto, 2020. "Energy Multiphase Model for Biocoal Conversion Systems by Means of a Nodal Network," Energies, MDPI, vol. 13(11), pages 1-13, May.
    6. Huopana, Tuomas & Song, Han & Kolehmainen, Mikko & Niska, Harri, 2013. "A regional model for sustainable biogas electricity production: A case study from a Finnish province," Applied Energy, Elsevier, vol. 102(C), pages 676-686.
    7. Mohsen Jamali & Esmaeil Bakhshandeh & Mohammad Yaghoubi Khanghahi & Carmine Crecchio, 2021. "Metadata Analysis to Evaluate Environmental Impacts of Wheat Residues Burning on Soil Quality in Developing and Developed Countries," Sustainability, MDPI, vol. 13(11), pages 1-13, June.
    8. Patrizio, P. & Leduc, S. & Chinese, D. & Kraxner, F., 2017. "Internalizing the external costs of biogas supply chains in the Italian energy sector," Energy, Elsevier, vol. 125(C), pages 85-96.
    9. Salehi-Amiri, Amirhossein & Zahedi, Ali & Akbapour, Navid & Hajiaghaei-Keshteli, Mostafa, 2021. "Designing a sustainable closed-loop supply chain network for walnut industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    10. Tan, Raymond R. & Aviso, Kathleen B. & Barilea, Ivan U. & Culaba, Alvin B. & Cruz, Jose B., 2012. "A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints," Applied Energy, Elsevier, vol. 90(1), pages 154-160.
    11. Mobini, Mahdi & Sowlati, Taraneh & Sokhansanj, Shahab, 2011. "Forest biomass supply logistics for a power plant using the discrete-event simulation approach," Applied Energy, Elsevier, vol. 88(4), pages 1241-1250, April.
    12. Krajacic, Goran & Duic, Neven & Carvalho, Maria da Graça, 2011. "How to achieve a 100% RES electricity supply for Portugal?," Applied Energy, Elsevier, vol. 88(2), pages 508-517, February.
    13. Höhn, J. & Lehtonen, E. & Rasi, S. & Rintala, J., 2014. "A Geographical Information System (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland," Applied Energy, Elsevier, vol. 113(C), pages 1-10.
    14. Timur Kogabayev & Anne Põder & Henrik Barth & Rando Värnik, 2023. "Prospects for Wood Pellet Production in Kazakhstan: A Case Study on Business Model Adjustment," Energies, MDPI, vol. 16(15), pages 1-20, August.
    15. Nagy, Karoly & Körmendi, Krisztina, 2012. "Use of renewable energy sources in light of the “New Energy Strategy for Europe 2011–2020”," Applied Energy, Elsevier, vol. 96(C), pages 393-399.
    16. Truong, Nguyen Le & Gustavsson, Leif, 2013. "Integrated biomass-based production of district heat, electricity, motor fuels and pellets of different scales," Applied Energy, Elsevier, vol. 104(C), pages 623-632.
    17. Holmgren, Kristina M. & Berntsson, Thore S. & Andersson, Eva & Rydberg, Tomas, 2015. "The influence of biomass supply chains and by-products on the greenhouse gas emissions from gasification-based bio-SNG production systems," Energy, Elsevier, vol. 90(P1), pages 148-162.
    18. Ghadge, Abhijeet & van der Werf, Sjoerd & Er Kara, Merve & Goswami, Mohit & Kumar, Pankaj & Bourlakis, Michael, 2020. "Modelling the impact of climate change risk on bioethanol supply chains," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    19. Leonel J.R. Nunes & Jorge T. Pereira da Costa & Radu Godina & João C.O. Matias & João P.S. Catalão, 2020. "A Logistics Management System for a Biomass-to-Energy Production Plant Storage Park," Energies, MDPI, vol. 13(20), pages 1-21, October.
    20. Maung, Thein A. & Gustafson, Cole R. & Saxowsky, David M. & Nowatzki, John & Miljkovic, Tatjana & Ripplinger, David, 2013. "The logistics of supplying single vs. multi-crop cellulosic feedstocks to a biorefinery in southeast North Dakota," Applied Energy, Elsevier, vol. 109(C), pages 229-238.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:196:y:2022:i:c:p:405-421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.