IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v280y2020ics0306261920313921.html
   My bibliography  Save this article

Biodiesel production from engineered sugarcane lipids under uncertain feedstock compositions: Process design and techno-economic analysis

Author

Listed:
  • Arora, Amit
  • Singh, Vijay

Abstract

In this study, different process schemes were designed and evaluated for biodiesel production from engineered cane lipids with uncertain fatty acid compositions. Four different process schemes were compared under (i) thermal glycerolysis and (ii) enzymatic glycerolysis approaches. These schemes were based on the biodiesel yield and economic indicators such as the net present value (NPV) and the minimum selling price (MSP) of biodiesel. A scheme with polar lipid separation under thermal glycerolysis resulted in the maximum NPV ($96.5 million) and minimum MSP ($1107/ton biodiesel), respectively. Through local sensitivity analysis, it was concluded that the cane lipid percentage is the most significant factor influencing process economics. A conjoint analysis of the lipid procurement price and cane lipid percent suggested that 15% cane lipids with a low lipid procurement price ($0.536/kg) results in a positive NPV. When the cane lipid price is higher (>$0.80/kg), a 20% lipid content should be considered to achieve a positive NPV. At 20% cane lipids, the worst-case and best-case scenarios were evaluated by analyzing the interplay of the three most important parameters, The best-case scenario revealed that the minimum NPV under any process scheme could yield more than $100 million (or MSP: $0.80/L), and the worst-case analysis showed that losses incurred by the plant could be as high as $80 million (MSP: $1.36/L). A Monte Carlo simulation indicated that there is a 70% chance of the plant being profitable (NPV > 0).

Suggested Citation

  • Arora, Amit & Singh, Vijay, 2020. "Biodiesel production from engineered sugarcane lipids under uncertain feedstock compositions: Process design and techno-economic analysis," Applied Energy, Elsevier, vol. 280(C).
  • Handle: RePEc:eee:appene:v:280:y:2020:i:c:s0306261920313921
    DOI: 10.1016/j.apenergy.2020.115933
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920313921
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115933?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Costa, Emanuel & Almeida, Manuel Fonseca & Alvim-Ferraz, Maria da Conceição & Dias, Joana Maia, 2018. "Effect of Crambe abyssinica oil degumming in phosphorus concentration of refined oil and derived biodiesel," Renewable Energy, Elsevier, vol. 124(C), pages 27-33.
    2. Zhao, Xin & Yao, Guolin & Tyner, Wallace E., 2016. "Quantifying breakeven price distributions in stochastic techno-economic analysis," Applied Energy, Elsevier, vol. 183(C), pages 318-326.
    3. Dutta, Kasturi & Daverey, Achlesh & Lin, Jih-Gaw, 2014. "Evolution retrospective for alternative fuels: First to fourth generation," Renewable Energy, Elsevier, vol. 69(C), pages 114-122.
    4. Campbell, Robert M. & Anderson, Nathaniel M. & Daugaard, Daren E. & Naughton, Helen T., 2018. "Financial viability of biofuel and biochar production from forest biomass in the face of market price volatility and uncertainty," Applied Energy, Elsevier, vol. 230(C), pages 330-343.
    5. Lin, Lin & Cunshan, Zhou & Vittayapadung, Saritporn & Xiangqian, Shen & Mingdong, Dong, 2011. "Opportunities and challenges for biodiesel fuel," Applied Energy, Elsevier, vol. 88(4), pages 1020-1031, April.
    6. Meng, Xin & Yang, Jianming & Xu, Xin & Zhang, Lei & Nie, Qingjuan & Xian, Mo, 2009. "Biodiesel production from oleaginous microorganisms," Renewable Energy, Elsevier, vol. 34(1), pages 1-5.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Junjie & Zhang, Yueling & Yang, Yanli & Zhang, Xiaomei & Wang, Nana & Zheng, Yonghong & Tian, Yajun & Xie, Kechang, 2022. "Life cycle assessment and techno-economic analysis of ethanol production via coal and its competitors: A comparative study," Applied Energy, Elsevier, vol. 312(C).
    2. Yang, Zaoli & Ahmad, Salman & Bernardi, Andrea & Shang, Wen-long & Xuan, Jin & Xu, Bing, 2023. "Evaluating alternative low carbon fuel technologies using a stakeholder participation-based q-rung orthopair linguistic multi-criteria framework," Applied Energy, Elsevier, vol. 332(C).
    3. Wancura, João H.C. & Brondani, Michel & dos Santos, Maicon S.N. & Oro, Carolina E.D. & Wancura, Guilherme C. & Tres, Marcus V. & Oliveira, J. Vladimir, 2023. "Demystifying the enzymatic biodiesel: How lipases are contributing to its technological advances," Renewable Energy, Elsevier, vol. 216(C).
    4. Gourich, Wail & Chan, Eng-Seng & Ng, Wei Zhe & Obon, Aaron Anthony & Maran, Kireshwen & Ong, Yi Hui & Lee, Chin Loong & Tan, Jully & Song, Cher Pin, 2022. "Life cycle benefits of enzymatic biodiesel co-produced in palm oil mills from sludge palm oil as renewable fuel for rural electrification," Applied Energy, Elsevier, vol. 325(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Hao & Zhang, Xinru & Jiang, Zeyi & Wang, Xinyu & Wang, Yi & Cao, Limei & Zhang, Xinxin, 2020. "Effect of light spectra on microalgal biofilm: Cell growth, photosynthetic property, and main organic composition," Renewable Energy, Elsevier, vol. 157(C), pages 83-89.
    2. Konur, Ozcan, 2011. "The scientometric evaluation of the research on the algae and bio-energy," Applied Energy, Elsevier, vol. 88(10), pages 3532-3540.
    3. Chen, Wei & Ma, Lin & Zhou, Peng-peng & Zhu, Yuan-min & Wang, Xiao-peng & Luo, Xin-an & Bao, Zhen-dong & Yu, Long-jiang, 2015. "A novel feedstock for biodiesel production: The application of palmitic acid from Schizochytrium," Energy, Elsevier, vol. 86(C), pages 128-138.
    4. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A. & Liaquat, A.M. & Shahabuddin, M. & Varman, M., 2012. "Prospects of biodiesel from Jatropha in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5007-5020.
    5. Yan, Yunjun & Li, Xiang & Wang, Guilong & Gui, Xiaohua & Li, Guanlin & Su, Feng & Wang, Xiaofeng & Liu, Tao, 2014. "Biotechnological preparation of biodiesel and its high-valued derivatives: A review," Applied Energy, Elsevier, vol. 113(C), pages 1614-1631.
    6. Bora, Plaban & Konwar, Lakhya Jyoti & Boro, Jutika & Phukan, Mayur Mausoom & Deka, Dhanapati & Konwar, Bolin Kumar, 2014. "Hybrid biofuels from non-edible oils: A comparative standpoint with corresponding biodiesel," Applied Energy, Elsevier, vol. 135(C), pages 450-460.
    7. Zhang, Xiaolei & Yan, Song & Tyagi, Rajeshwar D. & Surampalli, RaoY. & Valéro, Jose R., 2014. "Wastewater sludge as raw material for microbial oils production," Applied Energy, Elsevier, vol. 135(C), pages 192-201.
    8. Wu, Hong & Li, Yuanyuan & Chen, Lei & Zong, Minhua, 2011. "Production of microbial oil with high oleic acid content by Trichosporon capitatum," Applied Energy, Elsevier, vol. 88(1), pages 138-142, January.
    9. Thanh Xuan NguyenThi & Jean-Patrick Bazile & David Bessières, 2018. "Density Measurements of Waste Cooking Oil Biodiesel and Diesel Blends Over Extended Pressure and Temperature Ranges," Energies, MDPI, vol. 11(5), pages 1-14, May.
    10. Sánchez-Bayo, Alejandra & López-Chicharro, Daniel & Morales, Victoria & Espada, Juan José & Puyol, Daniel & Martínez, Fernando & Astals, Sergi & Vicente, Gemma & Bautista, Luis Fernando & Rodríguez, R, 2020. "Biodiesel and biogas production from Isochrysis galbana using dry and wet lipid extraction: A biorefinery approach," Renewable Energy, Elsevier, vol. 146(C), pages 188-195.
    11. Peralta-Ruiz, Y. & González-Delgado, A.-D. & Kafarov, V., 2013. "Evaluation of alternatives for microalgae oil extraction based on exergy analysis," Applied Energy, Elsevier, vol. 101(C), pages 226-236.
    12. Giulio Allesina & Simone Pedrazzi, 2021. "Barriers to Success: A Technical Review on the Limits and Possible Future Roles of Small Scale Gasifiers," Energies, MDPI, vol. 14(20), pages 1-23, October.
    13. Dar, Rouf Ahmad & Tsui, To-Hung & Zhang, Le & Tong, Yen Wah & Sharon, Sigal & Shoseyov, Oded & Liu, Ronghou, 2024. "Fermentation of organic wastes through oleaginous microorganisms for lipid production - Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    14. Siwina, Siraprapha & Leesing, Ratanaporn, 2021. "Bioconversion of durian (Durio zibethinus Murr.) peel hydrolysate into biodiesel by newly isolated oleaginous yeast Rhodotorula mucilaginosa KKUSY14," Renewable Energy, Elsevier, vol. 163(C), pages 237-245.
    15. Hongbo Liu & Shuanglu Liang, 2019. "The Nexus between Energy Consumption, Biodiversity, and Economic Growth in Lancang-Mekong Cooperation (LMC): Evidence from Cointegration and Granger Causality Tests," IJERPH, MDPI, vol. 16(18), pages 1-15, September.
    16. Ko, Ja Kyong & Lee, Jae Hoon & Jung, Je Hyeong & Lee, Sun-Mi, 2020. "Recent advances and future directions in plant and yeast engineering to improve lignocellulosic biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    17. Aytav, Emre & Kocar, Günnur, 2013. "Biodiesel from the perspective of Turkey: Past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 335-350.
    18. Elena Tamburini & Mattias Gaglio & Giuseppe Castaldelli & Elisa Anna Fano, 2020. "Is Bioenergy Truly Sustainable When Land-Use-Change (LUC) Emissions Are Accounted for? The Case-Study of Biogas from Agricultural Biomass in Emilia-Romagna Region, Italy," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    19. Zhang, X.L. & Yan, S. & Tyagi, R.D. & Surampalli, R.Y., 2013. "Biodiesel production from heterotrophic microalgae through transesterification and nanotechnology application in the production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 216-223.
    20. Makarfi Isa, Yusuf & Ganda, Elvis Tinashe, 2018. "Bio-oil as a potential source of petroleum range fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 69-75.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:280:y:2020:i:c:s0306261920313921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.