IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipbs0960148124016963.html
   My bibliography  Save this article

Adaptive hierarchical energy management strategy for fuel cell mobile robot hybrid power system based on working condition recognition

Author

Listed:
  • Wang, Yunlong
  • Wang, Yongfu
  • Li, Pengxu

Abstract

Energy management of hybrid power is critical to maintain the economical and efficient operation of fuel cell mobile robots. To improve the energy distribution between the proton exchange membrane fuel cell (PEMFC) and battery under different working conditions, this paper proposes an adaptive hierarchical energy management strategy (AHEMS) based on the recognition and management levels. Firstly, the recognition level realizes the identification of different working conditions based on the machine learning (ML) methods including the K-means and KNN. Secondly, the fuel cell hydrogen consumption and efficiency are both optimized by adaptive multi-objective particle swarm optimization (AMOPSO) at the management level. Specifically, an adaptive flight parameter strategy based on the particle dispersity (PD) information is proposed to balance the convergence and diversity of Pareto solutions. Besides, to overcome the parameter uncertainty caused by different working states and improve the system performance, an interval optimization scheme is proposed based on the Pareto solutions. Finally, the fuzzy decision combined with the recognition results and state of charge (SOC) of the battery is performed to find the most appropriate power distribution of the PEMFC and battery. The proposed AHEMS algorithm is compared with different algorithms in the numerical simulation and hardware-in-loop (HIL) experiments. These results demonstrate that the hybrid power system with the proposed optimization scheme performs better than the base model and classical optimization algorithms in terms of the hydrogen consumption and efficiency indexes, revealing the success of this AHEMS approach in solving the energy distribution problem in different working conditions.

Suggested Citation

  • Wang, Yunlong & Wang, Yongfu & Li, Pengxu, 2024. "Adaptive hierarchical energy management strategy for fuel cell mobile robot hybrid power system based on working condition recognition," Renewable Energy, Elsevier, vol. 237(PB).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124016963
    DOI: 10.1016/j.renene.2024.121628
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124016963
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121628?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Li & Li, Guanru & You, Fengqi, 2020. "Combined internal resistance and state-of-charge estimation of lithium-ion battery based on extended state observer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Castaings, Ali & Lhomme, Walter & Trigui, Rochdi & Bouscayrol, Alain, 2016. "Comparison of energy management strategies of a battery/supercapacitors system for electric vehicle under real-time constraints," Applied Energy, Elsevier, vol. 163(C), pages 190-200.
    3. Lü, Xueqin & Deng, Ruiyu & Chen, Chao & Wu, Yinbo & Meng, Ruidong & Long, Liyuan, 2022. "Performance optimization of fuel cell hybrid power robot based on power demand prediction and model evaluation," Applied Energy, Elsevier, vol. 316(C).
    4. Erdinc, O. & Uzunoglu, M., 2010. "Recent trends in PEM fuel cell-powered hybrid systems: Investigation of application areas, design architectures and energy management approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2874-2884, December.
    5. Matraji, Imad & Laghrouche, Salah & Jemei, Samir & Wack, Maxime, 2013. "Robust control of the PEM fuel cell air-feed system via sub-optimal second order sliding mode," Applied Energy, Elsevier, vol. 104(C), pages 945-957.
    6. Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Development of energy management system based on a rule-based power distribution strategy for hybrid power sources," Energy, Elsevier, vol. 175(C), pages 1055-1066.
    7. Abdeldjalil Djouahi & Belkhir Negrou & Boubakeur Rouabah & Abdelbasset Mahboub & Mohamed Mahmoud Samy, 2023. "Optimal Sizing of Battery and Super-Capacitor Based on the MOPSO Technique via a New FC-HEV Application," Energies, MDPI, vol. 16(9), pages 1-18, May.
    8. Safari, Amin & Shahsavari, Hossein & Salehi, Javad, 2018. "A mathematical model of SOFC power plant for dynamic simulation of multi-machine power systems," Energy, Elsevier, vol. 149(C), pages 397-413.
    9. Xueqin Lü, & Wu, Yinbo & Lian, Jie & Zhang, Yangyang, 2021. "Energy management and optimization of PEMFC/battery mobile robot based on hybrid rule strategy and AMPSO," Renewable Energy, Elsevier, vol. 171(C), pages 881-901.
    10. Yun Bao & Wenbin Dong & Dian Wang, 2018. "Online Internal Resistance Measurement Application in Lithium Ion Battery Capacity and State of Charge Estimation," Energies, MDPI, vol. 11(5), pages 1-11, April.
    11. Kim, Youngki & Figueroa-Santos, Miriam & Prakash, Niket & Baek, Stanley & Siegel, Jason B. & Rizzo, Denise M., 2020. "Co-optimization of speed trajectory and power management for a fuel-cell/battery electric vehicle," Applied Energy, Elsevier, vol. 260(C).
    12. Fathabadi, Hassan, 2019. "Combining a proton exchange membrane fuel cell (PEMFC) stack with a Li-ion battery to supply the power needs of a hybrid electric vehicle," Renewable Energy, Elsevier, vol. 130(C), pages 714-724.
    13. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    14. Kang, Sanggyu & Zhao, Li & Brouwer, Jacob, 2019. "Dynamic modeling and verification of a proton exchange membrane fuel cell-battery hybrid system to power servers in data centers," Renewable Energy, Elsevier, vol. 143(C), pages 313-327.
    15. Olatomiwa, Lanre & Mekhilef, Saad & Ismail, M.S. & Moghavvemi, M., 2016. "Energy management strategies in hybrid renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 821-835.
    16. Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine," Applied Energy, Elsevier, vol. 254(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioan-Sorin Sorlei & Nicu Bizon & Phatiphat Thounthong & Mihai Varlam & Elena Carcadea & Mihai Culcer & Mariana Iliescu & Mircea Raceanu, 2021. "Fuel Cell Electric Vehicles—A Brief Review of Current Topologies and Energy Management Strategies," Energies, MDPI, vol. 14(1), pages 1-29, January.
    2. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    3. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Bizon, Nicu, 2019. "Fuel saving strategy using real-time switching of the fueling regulators in the proton exchange membrane fuel cell system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    5. Lü, Xueqin & Meng, Ruidong & Deng, Ruiyu & Long, Liyuan & Wu, Yinbo, 2022. "Energy economy optimization and comprehensive performance improvement for PEMFC/LIB hybrid system based on hierarchical optimization," Renewable Energy, Elsevier, vol. 193(C), pages 1132-1149.
    6. Nicu Bizon & Phatiphat Thounthong, 2021. "A Simple and Safe Strategy for Improving the Fuel Economy of a Fuel Cell Vehicle," Mathematics, MDPI, vol. 9(6), pages 1-29, March.
    7. Bizon, Nicu, 2017. "Energy optimization of fuel cell system by using global extremum seeking algorithm," Applied Energy, Elsevier, vol. 206(C), pages 458-474.
    8. Xueqin Lü, & Wu, Yinbo & Lian, Jie & Zhang, Yangyang, 2021. "Energy management and optimization of PEMFC/battery mobile robot based on hybrid rule strategy and AMPSO," Renewable Energy, Elsevier, vol. 171(C), pages 881-901.
    9. Yao He & Changchang Miao & Ji Wu & Xinxin Zheng & Xintian Liu & Xingtao Liu & Feng Han, 2021. "Research on the Power Distribution Method for Hybrid Power System in the Fuel Cell Vehicle," Energies, MDPI, vol. 14(3), pages 1-15, January.
    10. Hou, Junbo & Yang, Min & Ke, Changchun & Zhang, Junliang, 2020. "Control logics and strategies for air supply in PEM fuel cell engines," Applied Energy, Elsevier, vol. 269(C).
    11. Lopez Lopez, Guadalupe & Schacht Rodriguez, Ricardo & Alvarado, Victor M. & Gomez-Aguilar, J.F. & Mota, Juan E. & Sandoval, Cinda, 2017. "Hybrid PEMFC-supercapacitor system: Modeling and energy management in energetic macroscopic representation," Applied Energy, Elsevier, vol. 205(C), pages 1478-1494.
    12. Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine," Applied Energy, Elsevier, vol. 254(C).
    13. Nicu Bizon & Alin Gheorghita Mazare & Laurentiu Mihai Ionescu & Phatiphat Thounthong & Erol Kurt & Mihai Oproescu & Gheorghe Serban & Ioan Lita, 2019. "Better Fuel Economy by Optimizing Airflow of the Fuel Cell Hybrid Power Systems Using Fuel Flow-Based Load-Following Control," Energies, MDPI, vol. 12(14), pages 1-17, July.
    14. Liu, Xinzhi & Qi, Nanjian & Dai, Keren & Yin, Yajiang & Zhao, Jiahao & Wang, Xiaofeng & You, Zheng, 2022. "Sponge Supercapacitor rule-based energy management strategy for wireless sensor nodes optimized by using dynamic programing algorithm," Energy, Elsevier, vol. 239(PE).
    15. Hu, Jiayi & Li, Jianqiu & Hu, Zunyan & Xu, Liangfei & Ouyang, Minggao, 2021. "Power distribution strategy of a dual-engine system for heavy-duty hybrid electric vehicles using dynamic programming," Energy, Elsevier, vol. 215(PA).
    16. Kandidayeni, M. & Macias, A. & Boulon, L. & Kelouwani, S., 2020. "Investigating the impact of ageing and thermal management of a fuel cell system on energy management strategies," Applied Energy, Elsevier, vol. 274(C).
    17. Liu, Yonggang & Liu, Junjun & Zhang, Yuanjian & Wu, Yitao & Chen, Zheng & Ye, Ming, 2020. "Rule learning based energy management strategy of fuel cell hybrid vehicles considering multi-objective optimization," Energy, Elsevier, vol. 207(C).
    18. Lü, Xueqin & Deng, Ruiyu & Chen, Chao & Wu, Yinbo & Meng, Ruidong & Long, Liyuan, 2022. "Performance optimization of fuel cell hybrid power robot based on power demand prediction and model evaluation," Applied Energy, Elsevier, vol. 316(C).
    19. Nicu Bizon & Mihai Oproescu, 2018. "Experimental Comparison of Three Real-Time Optimization Strategies Applied to Renewable/FC-Based Hybrid Power Systems Based on Load-Following Control," Energies, MDPI, vol. 11(12), pages 1-32, December.
    20. Liu, Zhao & Chen, Huicui & Peng, Lian & Ye, Xichen & Xu, Sichen & Zhang, Tong, 2022. "Feedforward-decoupled closed-loop fuzzy proportion-integral-derivative control of air supply system of proton exchange membrane fuel cell," Energy, Elsevier, vol. 240(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124016963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.