Analyzing the effects of shading on power output in curved photovoltaic array on airship
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2024.121551
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Satpathy, Priya Ranjan & Jena, Sasmita & Sharma, Renu, 2018. "Power enhancement from partially shaded modules of solar PV arrays through various interconnections among modules," Energy, Elsevier, vol. 144(C), pages 839-850.
- Liu, Yang & Du, Huafei & Xu, Ziyuan & Sun, Kangwen & Lv, Mingyun, 2022. "Mission-based optimization of insulation layer for the solar array on the stratospheric airship," Renewable Energy, Elsevier, vol. 191(C), pages 318-329.
- Gupta, Sowmya & Rajhans, Chinmay & Duttagupta, Siddhartha P. & Mitra, Mira, 2021. "Hybrid energy design for lighter than air systems," Renewable Energy, Elsevier, vol. 173(C), pages 781-794.
- Liu, Yang & Sun, Kangwen & Xu, Ziyuan & Lv, Mingyun, 2022. "Energy efficiency assessment of photovoltaic array on the stratospheric airship under partial shading conditions," Applied Energy, Elsevier, vol. 325(C).
- Ahmed Al Mansur & Md. Ruhul Amin & Kazi Khairul Islam, 2019. "Performance Comparison of Mismatch Power Loss Minimization Techniques in Series-Parallel PV Array Configurations," Energies, MDPI, vol. 12(5), pages 1-21, March.
- Zhu, Weiyu & Xu, Yuanming & Du, Huafei & Li, Jun, 2019. "Thermal performance of high-altitude solar powered scientific balloon," Renewable Energy, Elsevier, vol. 135(C), pages 1078-1096.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhu, Weiyu & Jiang, Yi & Li, Jun, 2024. "Strategic implementation of variable-thickness insulation layers for stratospheric airships," Renewable Energy, Elsevier, vol. 236(C).
- Liu, Yang & Sun, Kangwen & Lv, Mingyun, 2024. "Mission-oriented dynamic reconfiguration of airborne photovoltaic array based on multidisciplinary model," Renewable Energy, Elsevier, vol. 234(C).
- Jiang, Yi & Lv, Mingyun & Sun, Kangwen, 2022. "Effects of installation angle on the energy performance for photovoltaic cells during airship cruise flight," Energy, Elsevier, vol. 258(C).
- Liu, Yang & Du, Huafei & Xu, Ziyuan & Sun, Kangwen & Lv, Mingyun, 2022. "Mission-based optimization of insulation layer for the solar array on the stratospheric airship," Renewable Energy, Elsevier, vol. 191(C), pages 318-329.
- Jiang, Yi & Lv, Mingyun & Wang, Chuanzhi & Meng, Xiangrui & Ouyang, Siyue & Wang, Guodong, 2021. "Layout optimization of stratospheric balloon solar array based on energy production," Energy, Elsevier, vol. 229(C).
- Shan, Chuan & Sun, Kangwen & Ji, Xinzhe & Cheng, Dongji, 2023. "A reconfiguration method for photovoltaic array of stratospheric airship based on multilevel optimization algorithm," Applied Energy, Elsevier, vol. 352(C).
- Ahmed Al Mansur & Md. Ruhul Amin & Molla Shahadat Hossain Lipu & Md. Imamul Islam & Ratil H. Ashique & Zubaeer Bin Shams & Mohammad Asif ul Haq & Md. Hasan Maruf & ASM Shihavuddin, 2023. "The Effects of Non-Uniformly-Aged Photovoltaic Array on Mismatch Power Loss: A Practical Investigation towards Novel Hybrid Array Configurations," Sustainability, MDPI, vol. 15(17), pages 1-17, September.
- de Jesus dos Santos Rodrigues, Marinaldo & Torres, Pedro Ferreira & Barros Galhardo, Marcos André & Chase, Otavio Andre & Monteiro, Weslley Leão & de Arimatéia Alves Vieira Filho, José & Mares, Fabríc, 2021. "A new methodology for the assessing of power losses in partially shaded SPV arrays," Energy, Elsevier, vol. 232(C).
- Gupta, Sowmya & Rajhans, Chinmay & Duttagupta, Siddhartha P. & Mitra, Mira, 2021. "Hybrid energy design for lighter than air systems," Renewable Energy, Elsevier, vol. 173(C), pages 781-794.
- Jiang, Yi & Lv, Mingyun & Qu, Zhipeng & Zhang, Lanchuan, 2020. "Performance evaluation for scientific balloon station-keeping strategies considering energy management strategy," Renewable Energy, Elsevier, vol. 156(C), pages 290-302.
- Han, Youhua & Liu, Yang & Lu, Shixiang & Basalike, Pie & Zhang, Jili, 2021. "Electrical performance and power prediction of a roll-bond photovoltaic thermal array under dewing and frosting conditions," Energy, Elsevier, vol. 237(C).
- Shen, Yu & He, Zengxiang & Xu, Zhen & Wang, Yiye & Li, Chenxi & Zhang, Jinxia & Zhang, Kanjian & Wei, Haikun, 2022. "Modeling of photovoltaic modules under common shading conditions," Energy, Elsevier, vol. 256(C).
- Hamid Iftikhar & Eduardo Sarquis & P. J. Costa Branco, 2021. "Why Can Simple Operation and Maintenance (O&M) Practices in Large-Scale Grid-Connected PV Power Plants Play a Key Role in Improving Its Energy Output?," Energies, MDPI, vol. 14(13), pages 1-29, June.
- Liu, Yang & Sun, Kangwen & Xu, Ziyuan & Lv, Mingyun, 2022. "Energy efficiency assessment of photovoltaic array on the stratospheric airship under partial shading conditions," Applied Energy, Elsevier, vol. 325(C).
- Satpathy, Priya Ranjan & Aljafari, Belqasem & Thanikanti, Sudhakar Babu & Madeti, Siva Rama Krishna, 2023. "Electrical fault tolerance of photovoltaic array configurations: Experimental investigation, performance analysis, monitoring and detection," Renewable Energy, Elsevier, vol. 206(C), pages 960-981.
- Muhammad Ali Raza & Saneea Zahra & Safdar Raza & Mohammad R. Altimania & Mannan Hassan & Hafiz Mudassir Munir & Ievgen Zaitsev & Vladislav Kuchanskyy, 2025. "Mitigating the Impact of Partial Shading Conditions on Photovoltaic Arrays Through Modified Bridge-Linked Configuration," Sustainability, MDPI, vol. 17(3), pages 1-18, February.
- Nuria Novas & Alfredo Alcayde & Isabel Robalo & Francisco Manzano-Agugliaro & Francisco G. Montoya, 2020. "Energies and Its Worldwide Research," Energies, MDPI, vol. 13(24), pages 1-41, December.
- Yeuntae Yoo & Gilsoo Jang & Jeong-Hwan Kim & Iseul Nam & Minhan Yoon & Seungmin Jung, 2019. "Accuracy Improvement Method of Energy Storage Utilization with DC Voltage Estimation in Large-Scale Photovoltaic Power Plants," Energies, MDPI, vol. 12(20), pages 1-15, October.
- Mao, Mingxuan & Chen, Siyu & Zhao, Liuqing & Feng, Xinying & Ma, Fuping, 2023. "Pavement PV array reconfiguration strategy based on traveling salesman problem," Energy, Elsevier, vol. 284(C).
- Rafi Zahedi & Parisa Ranjbaran & Gevork B. Gharehpetian & Fazel Mohammadi & Roya Ahmadiahangar, 2021. "Cleaning of Floating Photovoltaic Systems: A Critical Review on Approaches from Technical and Economic Perspectives," Energies, MDPI, vol. 14(7), pages 1-25, April.
More about this item
Keywords
Curved photovoltaic array; Partial shading condition; Output performance; Flight condition; Airship;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124016197. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.