IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v144y2018icp839-850.html
   My bibliography  Save this article

Power enhancement from partially shaded modules of solar PV arrays through various interconnections among modules

Author

Listed:
  • Satpathy, Priya Ranjan
  • Jena, Sasmita
  • Sharma, Renu

Abstract

Partial shading is considered as a curse for Solar Photovoltaic (SPV) array that targets to reduce system performance by minimizing power generation and creating hotspot that can damage the SPV modules connected in that array. During partial shading condition, irradiance received by the modules are different that leads to decrease in power generation from the SPV system. In this paper, the effect of partial shading is investigated for SPV arrays having different interconnection topologies to realize a configuration that can be a solution for all types of shading patterns. The three widely interconnection topologies namely Series-Parallel (SP), Bridge-Linked (BL) and Total Cross Tied (TCT) have been chosen for comparison. A comparison in power generation and mismatch power losses among these connections is done using MATLAB/SIMULINK environment and a prototype field experiment under different irradiance and shading patterns. The connections are studied in presence and absence of bypass diodes. It have been authenticated that despite of redundancy, TCT can be implemented in larger SPV arrays to enhance power generation under different shading patterns that results in minimization of mismatch loss in SPV system.

Suggested Citation

  • Satpathy, Priya Ranjan & Jena, Sasmita & Sharma, Renu, 2018. "Power enhancement from partially shaded modules of solar PV arrays through various interconnections among modules," Energy, Elsevier, vol. 144(C), pages 839-850.
  • Handle: RePEc:eee:energy:v:144:y:2018:i:c:p:839-850
    DOI: 10.1016/j.energy.2017.12.090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217321333
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.12.090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gautam, Nalin K. & Kaushika, N.D., 2002. "An efficient algorithm to simulate the electrical performance of solar photovoltaic arrays," Energy, Elsevier, vol. 27(4), pages 347-361.
    2. Meral, Mehmet Emin & Dinçer, Furkan, 2011. "A review of the factors affecting operation and efficiency of photovoltaic based electricity generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2176-2184, June.
    3. Satpathy, Priya Ranjan & Sharma, Renu & Jena, Sasmita, 2017. "A shade dispersion interconnection scheme for partially shaded modules in a solar PV array network," Energy, Elsevier, vol. 139(C), pages 350-365.
    4. Radziemska, E., 2003. "The effect of temperature on the power drop in crystalline silicon solar cells," Renewable Energy, Elsevier, vol. 28(1), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Satpathy, Priya Ranjan & Aljafari, Belqasem & Thanikanti, Sudhakar Babu & Madeti, Siva Rama Krishna, 2023. "Electrical fault tolerance of photovoltaic array configurations: Experimental investigation, performance analysis, monitoring and detection," Renewable Energy, Elsevier, vol. 206(C), pages 960-981.
    2. Ranjbaran, Parisa & Yousefi, Hossein & Gharehpetian, G.B. & Astaraei, Fatemeh Razi, 2019. "A review on floating photovoltaic (FPV) power generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 332-347.
    3. Satpathy, Priya Ranjan & Sharma, Renu & Dash, Sambit, 2019. "An efficient SD-PAR technique for maximum power generation from modules of partially shaded PV arrays," Energy, Elsevier, vol. 175(C), pages 182-194.
    4. Lee, Chung Geun & Shin, Woo Gyun & Lim, Jong Rok & Kang, Gi Hwan & Ju, Young Chul & Hwang, Hye Mi & Chang, Hyo Sik & Ko, Suk Whan, 2021. "Analysis of electrical and thermal characteristics of PV array under mismatching conditions caused by partial shading and short circuit failure of bypass diodes," Energy, Elsevier, vol. 218(C).
    5. Belqasem Aljafari & Priya Ranjan Satpathy & Siva Rama Krishna Madeti & Pradeep Vishnuram & Sudhakar Babu Thanikanti, 2022. "Reliability Enhancement of Photovoltaic Systems under Partial Shading through a Two-Step Module Placement Approach," Energies, MDPI, vol. 15(20), pages 1-27, October.
    6. Shen, Yu & He, Zengxiang & Xu, Zhen & Wang, Yiye & Li, Chenxi & Zhang, Jinxia & Zhang, Kanjian & Wei, Haikun, 2022. "Modeling of photovoltaic modules under common shading conditions," Energy, Elsevier, vol. 256(C).
    7. Rafi Zahedi & Parisa Ranjbaran & Gevork B. Gharehpetian & Fazel Mohammadi & Roya Ahmadiahangar, 2021. "Cleaning of Floating Photovoltaic Systems: A Critical Review on Approaches from Technical and Economic Perspectives," Energies, MDPI, vol. 14(7), pages 1-25, April.
    8. Kamran Ali Khan Niazi & Yongheng Yang & Mashood Nasir & Dezso Sera, 2019. "Evaluation of Interconnection Configuration Schemes for PV Modules with Switched-Inductor Converters under Partial Shading Conditions," Energies, MDPI, vol. 12(14), pages 1-12, July.
    9. Mao, Mingxuan & Chen, Siyu & Zhao, Liuqing & Feng, Xinying & Ma, Fuping, 2023. "Pavement PV array reconfiguration strategy based on traveling salesman problem," Energy, Elsevier, vol. 284(C).
    10. Krishna, G.Sai & Moger, Tukaram, 2019. "Enhancement of maximum power output through reconfiguration techniques under non-uniform irradiance conditions," Energy, Elsevier, vol. 187(C).
    11. Lappalainen, Kari & Valkealahti, Seppo, 2020. "Number of maximum power points in photovoltaic arrays during partial shading events by clouds," Renewable Energy, Elsevier, vol. 152(C), pages 812-822.
    12. de Jesus dos Santos Rodrigues, Marinaldo & Torres, Pedro Ferreira & Barros Galhardo, Marcos André & Chase, Otavio Andre & Monteiro, Weslley Leão & de Arimatéia Alves Vieira Filho, José & Mares, Fabríc, 2021. "A new methodology for the assessing of power losses in partially shaded SPV arrays," Energy, Elsevier, vol. 232(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhenpeng & Ma, Tao & Zhao, Jiaxin & Song, Aotian & Cheng, Yuanda, 2019. "Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material," Energy, Elsevier, vol. 178(C), pages 471-486.
    2. Ahmad Abuelrub & Osama Saadeh & Hussein M. K. Al-Masri, 2018. "Scenario Aggregation-Based Grid-Connected Photovoltaic Plant Design," Sustainability, MDPI, vol. 10(4), pages 1-13, April.
    3. Sargunanathan, S. & Elango, A. & Mohideen, S. Tharves, 2016. "Performance enhancement of solar photovoltaic cells using effective cooling methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 382-393.
    4. Obiwulu, Anthony Umunnakwe & Erusiafe, Nald & Olopade, Muteeu Abayomi & Nwokolo, Samuel Chukwujindu, 2020. "Modeling and optimization of back temperature models of mono-crystalline silicon modules with special focus on the effect of meteorological and geographical parameters on PV performance," Renewable Energy, Elsevier, vol. 154(C), pages 404-431.
    5. Kahoul, Nabil & Chenni, Rachid & Cheghib, Hocine & Mekhilef, Saad, 2017. "Evaluating the reliability of crystalline silicon photovoltaic modules in harsh environment," Renewable Energy, Elsevier, vol. 109(C), pages 66-72.
    6. Memon, Mudasir Ahmed & Mekhilef, Saad & Mubin, Marizan & Aamir, Muhammad, 2018. "Selective harmonic elimination in inverters using bio-inspired intelligent algorithms for renewable energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2235-2253.
    7. Gan Huang & Jingyuan Xu & Christos N. Markides, 2023. "High-efficiency bio-inspired hybrid multi-generation photovoltaic leaf," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    9. Wilson, Earle, 2009. "Theoretical and operational thermal performance of a ‘wet’ crystalline silicon PV module under Jamaican conditions," Renewable Energy, Elsevier, vol. 34(6), pages 1655-1660.
    10. Erdil, Erzat & Ilkan, Mustafa & Egelioglu, Fuat, 2008. "An experimental study on energy generation with a photovoltaic (PV)–solar thermal hybrid system," Energy, Elsevier, vol. 33(8), pages 1241-1245.
    11. Wang, Yaw-Juen & Hsu, Po-Chun, 2011. "An investigation on partial shading of PV modules with different connection configurations of PV cells," Energy, Elsevier, vol. 36(5), pages 3069-3078.
    12. de Jesus dos Santos Rodrigues, Marinaldo & Torres, Pedro Ferreira & Barros Galhardo, Marcos André & Chase, Otavio Andre & Monteiro, Weslley Leão & de Arimatéia Alves Vieira Filho, José & Mares, Fabríc, 2021. "A new methodology for the assessing of power losses in partially shaded SPV arrays," Energy, Elsevier, vol. 232(C).
    13. Stropnik, Rok & Stritih, Uroš, 2016. "Increasing the efficiency of PV panel with the use of PCM," Renewable Energy, Elsevier, vol. 97(C), pages 671-679.
    14. Bouselham, Loubna & Rabhi, Abdelhamid & Hajji, Bekkay & Mellit, Adel, 2021. "Photovoltaic array reconfiguration method based on fuzzy logic and recursive least squares: An experimental validation," Energy, Elsevier, vol. 232(C).
    15. Ridha, Hussein Mohammed & Gomes, Chandima & Hizam, Hashim & Ahmadipour, Masoud & Heidari, Ali Asghar & Chen, Huiling, 2021. "Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Senturk, Ali, 2020. "Investigation of datasheet provided temperature coefficients of photovoltaic modules under various sky profiles at the field by applying a new validation procedure," Renewable Energy, Elsevier, vol. 152(C), pages 644-652.
    17. Hamed, Tareq Abu & Alshare, Aiman & El-Khalil, Hossam, 2019. "Passive cooling of building-integrated photovolatics in desert conditions: Experiment and modeling," Energy, Elsevier, vol. 170(C), pages 131-138.
    18. Abdmouleh, Zeineb & Alammari, Rashid A.M. & Gastli, Adel, 2015. "Recommendations on renewable energy policies for the GCC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1181-1191.
    19. Tyagi, V.V. & Rahim, Nurul A.A. & Rahim, N.A. & Selvaraj, Jeyraj A./L., 2013. "Progress in solar PV technology: Research and achievement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 443-461.
    20. Makki, Adham & Omer, Siddig & Sabir, Hisham, 2015. "Advancements in hybrid photovoltaic systems for enhanced solar cells performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 658-684.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:144:y:2018:i:c:p:839-850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.